{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,27]],"date-time":"2024-11-27T05:38:39Z","timestamp":1732685919590,"version":"3.28.2"},"reference-count":28,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100002383","name":"King Saud University","doi-asserted-by":"publisher","award":["RSPD2024R968"],"id":[{"id":"10.13039\/501100002383","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2024]]},"DOI":"10.1109\/access.2024.3476211","type":"journal-article","created":{"date-parts":[[2024,10,8]],"date-time":"2024-10-08T17:40:44Z","timestamp":1728409244000},"page":"149173-149191","source":"Crossref","is-referenced-by-count":0,"title":["SUNet: Coffee Leaf Disease Detection Using Hybrid Deep Learning Model"],"prefix":"10.1109","volume":"12","author":[{"given":"Deepak","family":"Thakur","sequence":"first","affiliation":[{"name":"Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India"}]},{"given":"Tanya","family":"Gera","sequence":"additional","affiliation":[{"name":"Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6005-2879","authenticated-orcid":false,"given":"Ambika","family":"Aggarwal","sequence":"additional","affiliation":[{"name":"Department of Computer Science and Engineering, UPES, Dehradun, India"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1996-2077","authenticated-orcid":false,"given":"Madhushi","family":"Verma","sequence":"additional","affiliation":[{"name":"School of Computer Science Engineering and Technology, Bennett University, Greater Noida, India"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6259-2046","authenticated-orcid":false,"given":"Manjit","family":"Kaur","sequence":"additional","affiliation":[{"name":"School of Computer Science and Artificial Intelligence, SR University, Warangal, Telangana, India"}]},{"given":"Dilbag","family":"Singh","sequence":"additional","affiliation":[{"name":"Research and Development Cell, Lovely Professional University, Phagwara, Punjab, India"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3212-8098","authenticated-orcid":false,"given":"Mohammed","family":"Amoon","sequence":"additional","affiliation":[{"name":"Department of Computer Science, Community College, King Saud University, Riyadh, Saudi Arabia"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.3390\/sym11070939"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1016\/j.biosystemseng.2016.01.017"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.3389\/fpls.2019.00941"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.biosystemseng.2019.02.002"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.dib.2021.107142"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1007\/s11042-022-13144-z"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1007\/s00500-023-07811-y"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.3390\/rs14143446"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.jksuci.2020.09.006"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.procs.2018.07.070"},{"key":"ref11","doi-asserted-by":"crossref","DOI":"10.1016\/j.ecoinf.2023.102213","article-title":"Inception-based global context attention network for the classification of coffee leaf diseases","volume":"77","author":"Karthik","year":"2023","journal-title":"Ecological Informat."},{"key":"ref12","article-title":"Towards automated, efficient, and interpretable diagnosis coffee leaf disease: A dual-path visual transformer network","volume":"255","author":"Salamai","year":"2024","journal-title":"Exp. Syst. Appl."},{"key":"ref13","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106476","article-title":"Detecting coffee leaf rust with UAV-based vegetation indices and decision tree machine learning models","volume":"190","author":"Marin","year":"2021","journal-title":"Comput. Electron. Agricult."},{"key":"ref14","doi-asserted-by":"crossref","DOI":"10.1016\/j.compag.2021.106191","article-title":"A deep learning approach combining instance and semantic segmentation to identify diseases and pests of coffee leaves from in-field images","volume":"186","author":"Tassis","year":"2021","journal-title":"Comput. Electron. Agricult."},{"key":"ref15","article-title":"Coffee disease classification at the edge using deep learning","volume":"4","author":"Yamashita","year":"2023","journal-title":"Smart Agricult. Technol."},{"key":"ref16","doi-asserted-by":"crossref","DOI":"10.1016\/j.eswa.2023.121481","article-title":"CoffeeNet: A deep learning approach for coffee plant leaves diseases recognition","volume":"237","author":"Nawaz","year":"2024","journal-title":"Exp. Syst. Appl."},{"key":"ref17","doi-asserted-by":"crossref","DOI":"10.1016\/j.imu.2023.101245","article-title":"Coffee disease classification using convolutional neural network based on feature concatenation","volume":"39","author":"Abuhayi","year":"2023","journal-title":"Informat. Med. Unlocked"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1113\/jphysiol.1959.sp006308"},{"key":"ref19","article-title":"Data augmentation by pairing samples for images classification","author":"Inoue","year":"2018","journal-title":"arXiv:1801.02929"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1016\/j.compag.2017.04.013"},{"article-title":"BRACOL\u2014A Brazilian arabica coffee leaf images dataset to identification and quantification of coffee diseases and pests","year":"2019","author":"Krohling","key":"ref21"},{"article-title":"BRACOT\u2014A Brazilian arabica coffee tree images dataset for instance segmentation of coffee leaves. Mendeley data","year":"2021","author":"Krohling","key":"ref22"},{"key":"ref23","article-title":"Convolutional networks for images, speech, and time series","volume":"3361","author":"Lecun","year":"1995","journal-title":"Handbook of Brain Theory and Neural Networks"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/SMC52423.2021.9658740"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1162\/neco.1989.1.4.541"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"ref28","doi-asserted-by":"crossref","DOI":"10.1016\/j.dib.2019.104414","article-title":"RoCoLe: A robusta coffee leaf images dataset for evaluation of machine learning based methods in plant diseases recognition","volume":"25","author":"Parraga-Alava","year":"2019","journal-title":"Data Brief"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx8\/6287639\/10380310\/10707607.pdf?arnumber=10707607","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,27]],"date-time":"2024-11-27T00:44:35Z","timestamp":1732668275000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10707607\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"references-count":28,"URL":"https:\/\/doi.org\/10.1109\/access.2024.3476211","relation":{},"ISSN":["2169-3536"],"issn-type":[{"type":"electronic","value":"2169-3536"}],"subject":[],"published":{"date-parts":[[2024]]}}}