{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,29]],"date-time":"2024-05-29T00:23:48Z","timestamp":1716942228818},"reference-count":48,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61272338","61673018","61703443"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"Guangzhou Science and Technology Founding Committee","doi-asserted-by":"publisher","award":["201804010255"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Guangdong Province Key Laboratory of Computational Science at Sun Yat-sen University","award":["2020B1212060032"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2024]]},"DOI":"10.1109\/access.2024.3398356","type":"journal-article","created":{"date-parts":[[2024,5,8]],"date-time":"2024-05-08T17:37:30Z","timestamp":1715189850000},"page":"71956-71969","source":"Crossref","is-referenced-by-count":0,"title":["CC-GNN: A Clustering Contrastive Learning Network for Graph Semi-Supervised Learning"],"prefix":"10.1109","volume":"12","author":[{"ORCID":"http:\/\/orcid.org\/0009-0003-4473-7303","authenticated-orcid":false,"given":"Peng","family":"Qin","sequence":"first","affiliation":[{"name":"School of Mathematics, Sun Yat-sen University, Guangzhou, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9375-2214","authenticated-orcid":false,"given":"Weifu","family":"Chen","sequence":"additional","affiliation":[{"name":"College of Information and Telecommunication Engineering, Guangzhou Maritime University, Guangzhou, China"}]},{"given":"Min","family":"Zhang","sequence":"additional","affiliation":[{"name":"School of Mathematics, Sun Yat-sen University, Guangzhou, China"}]},{"given":"Defang","family":"Li","sequence":"additional","affiliation":[{"name":"Guangzhou Vocational College of Technology and Business, Guangzhou, China"}]},{"given":"Guocan","family":"Feng","sequence":"additional","affiliation":[{"name":"School of Mathematics, Sun Yat-sen University, Guangzhou, China"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.acha.2010.04.005"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1016\/j.acha.2015.02.005"},{"key":"ref3","article-title":"Spectral networks and locally connected networks on graphs","author":"Bruna","year":"2013","journal-title":"arXiv:1312.6203"},{"key":"ref4","first-page":"3844","article-title":"Convolutional neural networks on graphs with fast localized spectral filtering","volume-title":"Proc. 30th Int. Conf. Neural Inf. Process. Syst.","author":"Defferrard"},{"key":"ref5","article-title":"Semi-supervised classification with graph convolutional networks","author":"Kipf","year":"2016","journal-title":"arXiv:1609.02907"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2021.108492"},{"key":"ref7","first-page":"1025","article-title":"Inductive representation learning on large graphs","volume-title":"Proc. 31st Int. Conf. Neural Inf. Process. Syst.","author":"Hamilton"},{"key":"ref8","article-title":"Graph attention networks","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Veli\u010dkovi\u0107"},{"key":"ref9","article-title":"How powerful are graph neural networks?","author":"Xu","year":"2018","journal-title":"arXiv:1810.00826"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.576"},{"key":"ref11","first-page":"294","article-title":"Contextual graph Markov model: A deep and generative approach to graph processing","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Bacciu"},{"issue":"43","key":"ref12","first-page":"1","article-title":"Benchmarking graph neural networks","volume":"24","author":"Dwivedi","year":"2020","journal-title":"J. Mach. Learn. Res."},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2019\/872"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1145\/3366423.3380149"},{"key":"ref15","first-page":"1","article-title":"Graph clustering with graph neural networks","volume":"24","author":"M\u00fcller","year":"2023","journal-title":"J. Mach. Learn. Res."},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1145\/3503161.3548339"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2022.3161030"},{"key":"ref18","first-page":"6827","article-title":"What makes for good views for contrastive learning?","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"33","author":"Tian"},{"key":"ref19","first-page":"18661","article-title":"Supervised contrastive learning","volume-title":"Proc. NIPS","author":"Khosla"},{"key":"ref20","article-title":"Data-efficient reinforcement learning with self-predictive representations","author":"Schwarzer","year":"2020","journal-title":"arXiv:2007.05929"},{"key":"ref21","first-page":"15535","article-title":"Learning representations by maximizing mutual information across views","volume-title":"Proc. 33rd Int. Conf. Neural Inf. Process. Syst.","author":"Bachman"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.5555\/3524938.3525087"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00975"},{"key":"ref24","first-page":"5812","article-title":"Graph contrastive learning with augmentations","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"33","author":"You"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i11.17206"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2022\/292"},{"key":"ref27","first-page":"30414","article-title":"InfoGCL: Information-aware graph contrastive learning","volume-title":"Advances in Neural Information Processing Systems","volume":"34","author":"Xu","year":"2021"},{"key":"ref28","first-page":"32465","article-title":"Uncovering the structural fairness in graph contrastive learning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"35","author":"Wang"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.2307\/2346830"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1007\/s11222-007-9033-z"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-387-73003-5_196"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01264-9_9"},{"key":"ref33","article-title":"Prototypical contrastive learning of unsupervised representations","author":"Li","year":"2020","journal-title":"arXiv:2005.04966"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR46437.2021.01240"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v35i10.17037"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV48922.2021.00075"},{"key":"ref37","article-title":"Residual gated graph ConvNets","author":"Bresson","year":"2017","journal-title":"arXiv:1711.07553"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.7551\/mitpress\/9780262033589.001.0001"},{"key":"ref39","article-title":"Graph attention networks","author":"Veli\u010dkovi\u0107","year":"2018","journal-title":"arXiv:1710.10903"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1609\/aimag.v29i3.2157"},{"key":"ref41","first-page":"912","article-title":"Semi-supervised learning using Gaussian fields and harmonic functions","volume-title":"Proc. 20th Int. Conf. Mach. Learn. (ICML)","author":"Zhu"},{"key":"ref42","first-page":"40","article-title":"Revisiting semi-supervised learning with graph embeddings","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Yang"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1145\/3178876.3186116"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2019\/630"},{"key":"ref45","first-page":"4116","article-title":"Contrastive multi-view representation learning on graphs","volume-title":"Proc. Int. Conf. Mach. Learn. (ICML)","author":"Hassani"},{"key":"ref46","article-title":"Deep graph infomax","author":"Veli\u010d kovi\u0107","year":"2018","journal-title":"arXiv:1809.10341"},{"key":"ref47","article-title":"Deep graph contrastive representation learning","author":"Zhu","year":"2020","journal-title":"arXiv:2006.04131"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2023.04.001"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/10380310\/10522632.pdf?arnumber=10522632","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,28]],"date-time":"2024-05-28T18:15:42Z","timestamp":1716920142000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10522632\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"references-count":48,"URL":"https:\/\/doi.org\/10.1109\/access.2024.3398356","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024]]}}}