{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T09:10:59Z","timestamp":1742807459505,"version":"3.37.3"},"reference-count":55,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2024]]},"DOI":"10.1109\/access.2024.3361035","type":"journal-article","created":{"date-parts":[[2024,2,2]],"date-time":"2024-02-02T18:36:37Z","timestamp":1706898997000},"page":"20705-20725","source":"Crossref","is-referenced-by-count":4,"title":["Deep Reinforcement Learning Robots for Algorithmic Trading: Considering Stock Market Conditions and U.S. Interest Rates"],"prefix":"10.1109","volume":"12","author":[{"given":"Ji-Heon","family":"Park","sequence":"first","affiliation":[{"name":"Department of Business Administration, Graduate School of Business, Seoul National University, Seoul, Republic of Korea"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8248-6352","authenticated-orcid":false,"given":"Jae-Hwan","family":"Kim","sequence":"additional","affiliation":[{"name":"Department of Data Science, (National) Korea Maritime and Ocean University, Busan, Republic of Korea"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-6735-6456","authenticated-orcid":false,"given":"Jun-Ho","family":"Huh","sequence":"additional","affiliation":[{"name":"Department of Data Science, (National) Korea Maritime and Ocean University, Busan, Republic of Korea"}]}],"member":"263","reference":[{"volume-title":"Security Analysis: Principles and Technique","year":"1934","author":"Graham","key":"ref1"},{"volume-title":"Technical Analysis of the Financial Markets: A Comprehensive Guide To Trading Methods and Applications","year":"1999","author":"Murphy","key":"ref2"},{"volume-title":"Quantitative Trading: How to Build Your Own Algorithmic Trading Business","year":"2021","author":"Chan","key":"ref3"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1002\/9781119209713"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/72.728395"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/21.364859"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1038\/nature14236"},{"key":"ref8","article-title":"Autonomous helicopter flight via reinforcement learning","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"16","author":"Kim"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2013.2290310"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/0304-405X(88)90021-9"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.2139\/ssrn.3355706"},{"volume-title":"Options Futures and Other Derivatives","year":"2003","author":"Hull","key":"ref12"},{"key":"ref13","first-page":"1","article-title":"Practical deep reinforcement learning approach for stock trading","author":"Liu","year":"2018","journal-title":"arXiv:1811.07522"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.3905\/jfds.2020.1.030"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1145\/3383455.3422540"},{"key":"ref16","first-page":"311","article-title":"Reinforcement learning in stock trading","volume-title":"Proc. Int. Conf. Comput. Sci., Appl. Math. Appl.","author":"Dang"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/ICSESS47205.2019.9040728"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/ISCID.2018.10116"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.ejor.2009.04.015"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1007\/s10614-016-9585-0"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2017.02.006"},{"key":"ref22","article-title":"A deep reinforcement learning framework for the financial portfolio management problem","author":"Jiang","year":"2017","journal-title":"arXiv:1706.10059"},{"volume-title":"Reinforcement Learning: An Introduction","year":"2018","author":"Sutton","key":"ref23"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/72.935097"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2016.2522401"},{"key":"ref26","article-title":"Optimistic bull or pessimistic bear: Adaptive deep reinforcement learning for stock portfolio allocation","author":"Li","year":"2019","journal-title":"arXiv:1907.01503"},{"key":"ref27","article-title":"Multi-agent deep reinforcement learning for liquidation strategy analysis","author":"Bao","year":"2019","journal-title":"arXiv:1906.11046"},{"volume-title":"UCL Course on RL","year":"2015","author":"Silver","key":"ref28"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1007\/978-981-15-4095-0"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/CDS49703.2020.00051"},{"key":"ref31","article-title":"OpenAI gym","author":"Brockman","year":"2016","journal-title":"arXiv:1606.01540"},{"key":"ref32","first-page":"1329","article-title":"Benchmarking deep reinforcement learning for continuous control","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Duan"},{"key":"ref33","article-title":"Proximal policy optimization algorithms","author":"Schulman","year":"2017","journal-title":"arXiv:1707.06347"},{"key":"ref34","article-title":"Highdimensional continuous control using generalized advantage estimation","author":"Schulman","year":"2015","journal-title":"arXiv:1506.02438"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1145\/2500117"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1080\/01621459.1970.10481180"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1016\/0304-4076(86)90063-1"},{"article-title":"Application of time series models (ARIMA, GARCH, and ARMA-GARCH) for stock market forecasting","year":"2017","author":"Grachev","key":"ref38"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.3390\/app13031956"},{"key":"ref40","article-title":"Deep reinforcement learning in quantitative algorithmic trading: A review","author":"Pricope","year":"2021","journal-title":"arXiv:2106.00123"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1111\/mafi.12382"},{"article-title":"Deep recurrent Q-learning for partially observable MDPs","volume-title":"Proc. AAAI Fall Symp.","author":"Hausknecht","key":"ref42"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/AIIoT58121.2023.10174358"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2015.2404299"},{"volume-title":"Fuzzy Sets, Uncertainty, and Information","year":"1987","author":"Klir","key":"ref45"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/91.277960"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/12.106218"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2022.12.042"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2023.121245"},{"volume-title":"Source Files of the Dataset Used: Google Drive","author":"Park","key":"ref50"},{"issue":"1","key":"ref51","first-page":"12348","article-title":"Stable-Baselines3: Reliable reinforcement learning implementations","volume":"22","author":"Raffin","year":"2021","journal-title":"J. Mach. Learn. Res."},{"key":"ref52","article-title":"Why gradient clipping accelerates training: A theoretical justification for adaptivity","author":"Zhang","year":"2019","journal-title":"arXiv:1905.11881"},{"key":"ref53","first-page":"2829","article-title":"Continuous deep Q-learning with model-based acceleration","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Gu"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.33564\/ijeast.2020.v04i12.054"},{"volume-title":"Source Files of the Dataset Used: Github","author":"Park","key":"ref55"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/10380310\/10419157.pdf?arnumber=10419157","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,31]],"date-time":"2024-08-31T05:30:26Z","timestamp":1725082226000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10419157\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"references-count":55,"URL":"https:\/\/doi.org\/10.1109\/access.2024.3361035","relation":{},"ISSN":["2169-3536"],"issn-type":[{"type":"electronic","value":"2169-3536"}],"subject":[],"published":{"date-parts":[[2024]]}}}