{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,3,2]],"date-time":"2024-03-02T02:29:03Z","timestamp":1709346543248},"reference-count":25,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2024,1,1]],"date-time":"2024-01-01T00:00:00Z","timestamp":1704067200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2022YFC3302801","2020YFC0833201"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100007129","name":"Natural Science Foundation of Shandong Province","doi-asserted-by":"publisher","award":["ZR2020MF004"],"id":[{"id":"10.13039\/501100007129","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2024]]},"DOI":"10.1109\/access.2024.3349944","type":"journal-article","created":{"date-parts":[[2024,1,4]],"date-time":"2024-01-04T19:58:32Z","timestamp":1704398312000},"page":"6745-6751","source":"Crossref","is-referenced-by-count":0,"title":["Low-Coupling Policy Optimization Framework for Power Allocation in Ultra-Dense Small-Cell Networks"],"prefix":"10.1109","volume":"12","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-5536-7390","authenticated-orcid":false,"given":"Haibo","family":"Chen","sequence":"first","affiliation":[{"name":"School of Information Science and Engineering, Shandong University, Qingdao, China"}]},{"given":"Xiao","family":"Liu","sequence":"additional","affiliation":[{"name":"School of Information Science and Engineering, Shandong University, Qingdao, China"}]},{"given":"Zhongwei","family":"Huang","sequence":"additional","affiliation":[{"name":"School of Information Science and Engineering, Shandong University, Qingdao, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6355-8015","authenticated-orcid":false,"given":"Yewen","family":"Cao","sequence":"additional","affiliation":[{"name":"School of Information Science and Engineering, Shandong University, Qingdao, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0003-4406","authenticated-orcid":false,"given":"Deqiang","family":"Wang","sequence":"additional","affiliation":[{"name":"School of Information Science and Engineering, Shandong University, Qingdao, China"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/MCOM.001.1900796"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/OJCOMS.2022.3153226"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2022.3153175"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/GCWkshps56602.2022.10008713"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/JSAC.2019.2933973"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/ICC.2018.8422864"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/ICC.2019.8761431"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/VTCFall.2018.8690757"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2020.3000328"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/TNSE.2022.3164648"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2020.3031436"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2020.3001736"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/IEEECONF51394.2020.9443301"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2020.3043009"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/TGCN.2023.3268208"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.3390\/math11071702"},{"key":"ref17","article-title":"Proximal policy optimization algorithms","author":"Schulman","year":"2017","journal-title":"arXiv:1707.06347"},{"key":"ref18","first-page":"1928","article-title":"Asynchronous methods for deep reinforcement learning","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Mnih"},{"key":"ref19","article-title":"Smooth exploration for robotic reinforcement learning","author":"Raffin","year":"2020","journal-title":"arXiv:2005.05719"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1049\/el:19930777"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/JSTSP.2007.914876"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2018.2812733"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2011.2147784"},{"issue":"268","key":"ref24","first-page":"1","article-title":"Stable-Baselines3: Reliable reinforcement learning implementations","volume":"22","author":"Raffin","year":"2021","journal-title":"J. Mach. Learn. Res."},{"key":"ref25","article-title":"Adam: A method for stochastic optimization","author":"Kingma","year":"2014","journal-title":"arXiv:1412.6980"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/10380310\/10380581.pdf?arnumber=10380581","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,18]],"date-time":"2024-01-18T01:24:55Z","timestamp":1705541095000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10380581\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024]]},"references-count":25,"URL":"https:\/\/doi.org\/10.1109\/access.2024.3349944","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024]]}}}