{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,13]],"date-time":"2024-01-13T00:32:56Z","timestamp":1705105976419},"reference-count":54,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100003725","name":"National Research Foundation of Korea (NRF) Grant funded by the Korean Government","doi-asserted-by":"publisher","award":["2022R1C1C1004590"],"id":[{"id":"10.13039\/501100003725","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100009392","name":"Prince Sattam bin Abdulaziz University","doi-asserted-by":"publisher","award":["PSAU\/2023\/R\/1445"],"id":[{"id":"10.13039\/100009392","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2023]]},"DOI":"10.1109\/access.2023.3343754","type":"journal-article","created":{"date-parts":[[2023,12,18]],"date-time":"2023-12-18T19:49:47Z","timestamp":1702928987000},"page":"143757-143770","source":"Crossref","is-referenced-by-count":0,"title":["Associative Discussion Among Generating Adversarial Samples Using Evolutionary Algorithm and Samples Generated Using GAN"],"prefix":"10.1109","volume":"11","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3387-0905","authenticated-orcid":false,"given":"Aruna","family":"Pavate","sequence":"first","affiliation":[{"name":"School of CSIT, Symbiosis Skills and Professional University, Pune, India"}]},{"given":"Rajesh","family":"Bansode","sequence":"additional","affiliation":[{"name":"Department of Information Technology, Thakur College of Engineering, Mumbai, India"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9247-9132","authenticated-orcid":false,"given":"Parvathaneni Naga","family":"Srinivasu","sequence":"additional","affiliation":[{"name":"Department of Teleinformatics Engineering, Federal University of Ceará, Fortaleza, Brazil"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6859-670X","authenticated-orcid":false,"given":"Jana","family":"Shafi","sequence":"additional","affiliation":[{"name":"Department of Computer Science, College of Arts and Science, Prince Sattam bin Abdulaziz University, Wadi Ad-Dawasir, Saudi Arabia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9118-8050","authenticated-orcid":false,"given":"Jaeyoung","family":"Choi","sequence":"additional","affiliation":[{"name":"School of Computing, Gachon University, Seongnam-si, Republic of Korea"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5206-272X","authenticated-orcid":false,"given":"Muhammad Fazal","family":"Ijaz","sequence":"additional","affiliation":[{"name":"School of IT and Engineering, Melbourne Institute of Technology, Melbourne, VIC, Australia"}]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1007\/978-981-19-0151-5_29"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.3390\/s22082988"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1038\/s41598-022-25089-2"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.14311\/NNW.2017.27.002"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/ICDABI53623.2021.9655806"},{"key":"ref6","article-title":"Intriguing properties of neural networks","author":"Szegedy","year":"2014","journal-title":"arXiv:1312.6199"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1201\/9781351251389-8"},{"key":"ref8","article-title":"MagNet and \u2018efficient defenses against adversarial attacks\u2019 are not robust to adversarial examples","author":"Carlini","year":"2017","journal-title":"arXiv:1711.08478"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1145\/3128572.3140448"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2018.00211"},{"key":"ref11","article-title":"Explaining and harnessing adversarial examples","author":"Goodfellow","year":"2014","journal-title":"arXiv:1412.6572"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2020.3018856"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.2139\/ssrn.3697374"},{"key":"ref14","article-title":"Large scale GAN training for high fidelity natural image synthesis","author":"Brock","year":"2018","journal-title":"arXiv:1809.11096"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1155\/2020\/3932584"},{"key":"ref16","article-title":"Defense-GAN: Protecting classifiers against adversarial attacks using generative models","author":"Samangouei","year":"2018","journal-title":"arXiv:1805.06605"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/tifs.2023.3278458"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.3390\/math10193532"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/EuroSP.2016.36"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.4018\/ijaci.293111"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/tevc.2019.2890858"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1016\/j.jss.2020.110767"},{"key":"ref23","article-title":"Random directional attack for fooling deep neural networks","author":"Luo","year":"2019","journal-title":"arXiv:1908.02658v1"},{"key":"ref24","first-page":"536","article-title":"PATE-GAN: Generating synthetic data with differential privacy guarantees","volume-title":"Proc. Int. Conf. Learn. Represent.","author":"Yoon"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/543"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2016.58"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.282"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1016\/j.jss.2020.110767"},{"key":"ref29","article-title":"MFI-PSO: A flexible and effective method in adversarial image generation for deep neural networks","author":"Shu","year":"2020","journal-title":"arXiv:2006.03243"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/ipccc55026.2022.9894322"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298640"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1186\/s41074-019-0053-3"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/SSCI47803.2020.9308361"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.2478\/popets-2019-0008"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR42600.2020.00033"},{"key":"ref36","first-page":"1","article-title":"GANs trained by a two time-scale update rule converge to a local Nash equilibrium","volume-title":"Proc. Adv. Neural Inf. Process. Syst. (NIPS)","volume":"30","author":"Heusel"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2018.2855136"},{"key":"ref38","article-title":"Unsupervised representation learning with deep convolutional generative adversarial networks","volume":"abs\/1511.06434","author":"Radford","year":"2015","journal-title":"CoRR"},{"key":"ref39","article-title":"Towards deep learning models resistant to adversarial attacks","author":"Madry","year":"2017","journal-title":"arXiv:1706.06083"},{"key":"ref40","first-page":"2642","article-title":"Conditional image synthesis with auxiliary classifier GANs","volume-title":"Proc. 34th Int. Conf. Mach. Learn.","volume":"70","author":"Odena"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.304"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/ICCVW.2019.00257"},{"key":"ref43","first-page":"1","article-title":"Defense-GAN: Protecting classifiers against adversarial attacks using generative models","volume-title":"6th Int. Conf. Learn. Represent. (ICLR)","author":"Samangouei"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1117\/12.2543218"},{"key":"ref45","first-page":"1","article-title":"Don\u2019t let your discriminator be fooled","volume-title":"Proc. 7th Int. Conf. Learn. Represent. (ICLR)","author":"Zhou"},{"key":"ref46","article-title":"Rob-GAN: Generator, discriminator, and adversarial attacker","author":"Liu","year":"2018","journal-title":"arXiv:1807.10454"},{"key":"ref47","article-title":"Improving the speed and quality of GAN by adversarial training","author":"Zhong","year":"2020","journal-title":"arXiv:2008.03364"},{"key":"ref48","article-title":"Improving global adversarial robustness generalization with adversarially trained GAN","author":"Wang","year":"2021","journal-title":"arXiv:2103.04513"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/icip42928.2021.9506278"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.3390\/s23052697"},{"key":"ref51","volume-title":"Dataset","year":"2023"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP42928.2021.9506332"},{"key":"ref53","first-page":"2234","article-title":"Improved techniques for training GANs","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"29","author":"Salimans"},{"issue":"1","key":"ref54","first-page":"405","article-title":"Generation of adversarial examples using adaptive differential evolution","volume":"16","author":"Kushida","year":"2020","journal-title":"Int. J. Innov. Comput., Inf. Control"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/10005208\/10363199.pdf?arnumber=10363199","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,12]],"date-time":"2024-01-12T19:58:40Z","timestamp":1705089520000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10363199\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"references-count":54,"URL":"https:\/\/doi.org\/10.1109\/access.2023.3343754","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023]]}}}