{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,15]],"date-time":"2024-09-15T13:49:39Z","timestamp":1726408179978},"reference-count":36,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"name":"Asian Development Bank under Higher Education for Technology and Innovation Asian Development Bank (HETI ADB) Project"},{"name":"Indonesian Ministry of Education and Culture under Penelitian Terapan Unggulan Perguruan Tinggi (PTUPT) Program"},{"DOI":"10.13039\/501100013355","name":"Institut Teknologi Sepuluh Nopember (ITS) under Project Scheme of the Publication Writing and Intellectual Property Rights (IPR) Incentive Program","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013355","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2023]]},"DOI":"10.1109\/access.2023.3326475","type":"journal-article","created":{"date-parts":[[2023,10,23]],"date-time":"2023-10-23T18:17:14Z","timestamp":1698085034000},"page":"119802-119810","source":"Crossref","is-referenced-by-count":2,"title":["Cyclical Learning Rate Optimization on Deep Learning Model for Brain Tumor Segmentation"],"prefix":"10.1109","volume":"11","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1393-3470","authenticated-orcid":false,"given":"Aziz","family":"Fajar","sequence":"first","affiliation":[{"name":"Department of Informatics, Faculty of Intelligent Electrical and Informatics Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5373-660X","authenticated-orcid":false,"given":"Riyanarto","family":"Sarno","sequence":"additional","affiliation":[{"name":"Department of Informatics, Faculty of Intelligent Electrical and Informatics Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7348-9762","authenticated-orcid":false,"given":"Chastine","family":"Fatichah","sequence":"additional","affiliation":[{"name":"Department of Informatics, Faculty of Intelligent Electrical and Informatics Technology, Institut Teknologi Sepuluh Nopember, Surabaya, Indonesia"}]},{"given":"Rahadian Indarto","family":"Susilo","sequence":"additional","affiliation":[{"name":"Department of Neurosurgery, Faculty of Medicine, Universitas Airlangga, Surabaya, Indonesia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4984-766X","authenticated-orcid":false,"given":"Gusti","family":"Pangestu","sequence":"additional","affiliation":[{"name":"School of Computer Science, Bina Nusantara University, Jakarta, Indonesia"}]}],"member":"263","reference":[{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/j.jksuci.2020.12.004"},{"key":"ref35","first-page":"1","article-title":"Comparison of simple moving average, single and modified single exponential smoothing","author":"swari","year":"2021","journal-title":"Proc IEEE 7th Inf Technol Int Seminar (ITIS)"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1002\/jemt.23597"},{"key":"ref34","article-title":"On the convergence of Adam and beyond","author":"reddi","year":"2019","journal-title":"arXiv 1904 09237"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1186\/s40537-021-00444-8"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/ICIMTech55957.2022.9915257"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/APPEEC45492.2019.8994429"},{"key":"ref31","first-page":"1","article-title":"The step decay schedule: A near optimal, geometrically decaying learning rate procedure for least squares","author":"ge","year":"2019","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4419-8853-9"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.3016319"},{"key":"ref33","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"2014","journal-title":"arXiv 1412 6980"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/RIVF.2019.8713733"},{"key":"ref32","first-page":"257","article-title":"Adaptive subgradient methods for online learning and stochastic optimization","volume":"12","author":"duchi","year":"2010","journal-title":"Proc 23rd Conf Learn Theory"},{"key":"ref2","first-page":"2359","article-title":"An effective WSSENet-based similarity retrieval method of large lung CT image databases","volume":"16","author":"zhuang","year":"2022","journal-title":"KSII Trans Internet Inf Syst"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1155\/2023\/2345835"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1016\/j.cmpb.2019.105119"},{"key":"ref16","first-page":"424","article-title":"3D U-Net: Learning dense volumetric segmentation from sparse annotation","author":"\u00e7i\u00e7ek","year":"2016","journal-title":"Medical Image Computing and Computer-Assisted Intervention—MICCAI"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/LGRS.2018.2802944"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1016\/j.compmedimag.2020.101719"},{"key":"ref24","first-page":"1775","article-title":"Cyclic self-organizing map for object recognition","volume":"15","author":"anter","year":"2023","journal-title":"Inform Sci Lett"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-35289-8_26"},{"key":"ref26","article-title":"ADADELTA: An adaptive learning rate method","author":"zeiler","year":"2012","journal-title":"arXiv 1212 5701"},{"key":"ref25","first-page":"1","article-title":"On the variance of the adaptive learning rate and beyond","author":"liu","year":"2019","journal-title":"Proc ICLR"},{"key":"ref20","doi-asserted-by":"crossref","first-page":"404","DOI":"10.3390\/app9030404","article-title":"Optimized high resolution 3D dense-U-Net network for brain and spine segmentation","volume":"9","author":"kolar\u00edk","year":"2019","journal-title":"Appl Sci"},{"key":"ref22","first-page":"1","article-title":"ImageNet classification with deep convolutional neural networks","author":"krizhevsky","year":"2012","journal-title":"Proc Adv Neural Inf Process Syst (NIPS)"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/WACV.2017.58"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2014.2377694"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/CITS49457.2020.9232482"},{"key":"ref29","article-title":"Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features","volume":"4","author":"bakas","year":"2017","journal-title":"Data Science Journal"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.18517\/ijaseit.9.4.4843"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.jksuci.2022.03.022"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/JBHI.2023.3247861"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.3390\/app13042493"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2022.104204"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1155\/2022\/2665283"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.32604\/cmes.2023.025217"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/10005208\/10290895.pdf?arnumber=10290895","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,11,27]],"date-time":"2023-11-27T20:11:40Z","timestamp":1701115900000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10290895\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"references-count":36,"URL":"https:\/\/doi.org\/10.1109\/access.2023.3326475","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023]]}}}