{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,3,2]],"date-time":"2024-03-02T00:04:13Z","timestamp":1709337853102},"reference-count":49,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100014188","name":"MSIT (Ministry of Science and ICT), Korea, under the ITRC","doi-asserted-by":"publisher","award":["IITP-2023-2018-0-01405"],"id":[{"id":"10.13039\/501100014188","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100010418","name":"IITP","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100010418","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Institute of Information & communications Technology Planning & Evaluation"},{"DOI":"10.13039\/501100003621","name":"Korea government","doi-asserted-by":"publisher","award":["2020-0-00368"],"id":[{"id":"10.13039\/501100003621","id-type":"DOI","asserted-by":"publisher"}]},{"name":"A Neural-Symbolic Model for Knowledge Acquisition and Inference Techniques)"},{"DOI":"10.13039\/501100013129","name":"Technology development Program","doi-asserted-by":"publisher","award":["1425173998"],"id":[{"id":"10.13039\/501100013129","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100013129","name":"Ministry of SMEs and Startups","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100013129","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2023]]},"DOI":"10.1109\/access.2023.3310257","type":"journal-article","created":{"date-parts":[[2023,8,30]],"date-time":"2023-08-30T17:26:39Z","timestamp":1693416399000},"page":"95747-95756","source":"Crossref","is-referenced-by-count":1,"title":["Uncovering the Risks and Drawbacks Associated With the Use of Synthetic Data for Grammatical Error Correction"],"prefix":"10.1109","volume":"11","author":[{"given":"Seonmin","family":"Koo","sequence":"first","affiliation":[{"name":"Department of Computer Science and Engineering, Korea University, Seoul, South Korea"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7200-9632","authenticated-orcid":false,"given":"Chanjun","family":"Park","sequence":"additional","affiliation":[{"name":"Department of Computer Science and Engineering, Korea University, Seoul, South Korea"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8109-8497","authenticated-orcid":false,"given":"Seolhwa","family":"Lee","sequence":"additional","affiliation":[{"name":"Department of Computer Science, Technical University of Darmstadt, Darmstadt, Germany"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4761-9818","authenticated-orcid":false,"given":"Jaehyung","family":"Seo","sequence":"additional","affiliation":[{"name":"Department of Computer Science and Engineering, Korea University, Seoul, South Korea"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8008-6160","authenticated-orcid":false,"given":"Sugyeong","family":"Eo","sequence":"additional","affiliation":[{"name":"Department of Computer Science and Engineering, Korea University, Seoul, South Korea"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0841-4262","authenticated-orcid":false,"given":"Hyeonseok","family":"Moon","sequence":"additional","affiliation":[{"name":"Department of Computer Science and Engineering, Korea University, Seoul, South Korea"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9269-1157","authenticated-orcid":false,"given":"Heuiseok","family":"Lim","sequence":"additional","affiliation":[{"name":"Department of Computer Science and Engineering, Korea University, Seoul, South Korea"}]}],"member":"263","reference":[{"key":"ref1","article-title":"A system to quantify industrial data quality","author":"Goosen","year":"2019"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.7551\/mitpress\/12588.003.0015"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1108\/INTR-08-2021-0600"},{"key":"ref4","article-title":"DataPerf: Benchmarks for data-centric AI development","author":"Mazumder","year":"2022","journal-title":"arXiv:2207.10062"},{"key":"ref5","article-title":"DMOps: Data management operation and recipes","author":"Choi","year":"2023","journal-title":"arXiv:2301.01228"},{"key":"ref6","first-page":"726","article-title":"Findings of the WMT 2020 shared task on parallel corpus filtering and alignment","volume-title":"Proc. 5th Conf. Mach. Transl.","author":"Koehn"},{"key":"ref7","article-title":"Analysis of false data injection impact on AI based solar photovoltaic power generation forecasting","author":"Sarp","year":"2021","journal-title":"arXiv:2110.09948"},{"issue":"36","key":"ref8","first-page":"81","article-title":"Noise injection\u2013denoising techniques to improve artificial intelligence-based rainfall\u2013runoff modeling","volume":"11","author":"Partovyan","year":"2018","journal-title":"Water Resour. Eng."},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1186\/s40537-019-0197-0"},{"key":"ref10","article-title":"Synthetic data for deep learning","author":"Nikolenko","year":"2019","journal-title":"arXiv:1909.11512"},{"key":"ref11","first-page":"1877","article-title":"Language models are few-shot learners","volume-title":"Proc. Adv. Neural Inf. Process. Syst.","volume":"33","author":"Brown"},{"key":"ref12","article-title":"LaMDA: Language models for dialog applications","author":"Thoppilan","year":"2022","journal-title":"arXiv:2201.08239"},{"key":"ref13","article-title":"ZeroShotDataAug: Generating and augmenting training data with ChatGPT","author":"Ubani","year":"2023","journal-title":"arXiv:2304.14334"},{"key":"ref14","article-title":"What can data-centric AI learn from data and ML engineering?","author":"Polyzotis","year":"2021","journal-title":"arXiv:2112.06439"},{"key":"ref15","article-title":"How should human translation coexist with NMT? Efficient tool for building high quality parallel corpus","author":"Park","year":"2021","journal-title":"arXiv:2111.00191"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2022.3152001"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/IEMBS.2006.260060"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/ICITST.2015.7412089"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1162\/coli_a_00458"},{"key":"ref20","first-page":"1268","article-title":"SSMBA: Self-supervised manifold based data augmentation for improving out-of-domain robustness","volume-title":"Proc. Conf. Empirical Methods Natural Lang. Process. (EMNLP)","author":"Ng"},{"key":"ref21","first-page":"76","article-title":"Integrating unsupervised data generation into self-supervised neural machine translation for low-resource languages","volume-title":"Proc. Mach. Transl. Summit XVIII, Res. Track","author":"Ruiter"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2021.emnlp-main.281"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.3390\/technologies9010002"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1146\/annurev-statistics-040720-031848"},{"key":"ref25","article-title":"Scaling laws for neural language models","author":"Kaplan","year":"2020","journal-title":"arXiv:2001.08361"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2021.wat-1.10"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2021.06.030"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2022.3165572"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/TPWRD.2021.3114547"},{"key":"ref30","article-title":"A comprehensive survey of AI-generated content (AIGC): A history of generative AI from GAN to ChatGPT","author":"Cao","year":"2023","journal-title":"arXiv:2303. 04226"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2022.3148210"},{"key":"ref32","article-title":"Foundations and trends in multimodal machine learning: Principles, challenges, and open questions","author":"Pu Liang","year":"2022","journal-title":"arXiv:2209.03430"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1038\/d41586-023-00056-7"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pdig.0000198"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1145\/1341431.1341443"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1145\/2666652.2666663"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2022.3179891"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1145\/3422622"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1145\/3383455.3422554"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1080\/13600834.2019.1573501"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1525\/jer.2007.2.1.101"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1001\/jama.2018.5630"},{"key":"ref43","first-page":"932","article-title":"OmniTab: Pretraining with natural and synthetic data for few-shot table-based question answering","volume-title":"Proc. Conf. North Amer. Chapter Assoc. Comput. Linguistics, Hum. Lang. Technol.","author":"Jiang"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.3390\/app12115545"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.48550\/ARXIV.1706.03762"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/N19-4009"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D18-2012"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.3115\/1073083.1073135"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/p15-2097"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/10005208\/10234394.pdf?arnumber=10234394","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,3,1]],"date-time":"2024-03-01T22:54:16Z","timestamp":1709333656000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10234394\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"references-count":49,"URL":"https:\/\/doi.org\/10.1109\/access.2023.3310257","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023]]}}}