{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,19]],"date-time":"2024-09-19T16:29:42Z","timestamp":1726763382371},"reference-count":135,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2023,1,1]],"date-time":"2023-01-01T00:00:00Z","timestamp":1672531200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"Science Foundation Ireland (SFI)-NSFC Partnership Program","doi-asserted-by":"publisher","award":["17\/NSFC\/5224"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100008530","name":"European Regional Development Fund through the SFI Research Centers Program","doi-asserted-by":"publisher","award":["13\/RC\/2077 P2 SFI CONNECT"],"id":[{"id":"10.13039\/501100008530","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003593","name":"Conselho Nacional de Desenvolvimento Cient\u00edfico e Tecnol\u00f3gico","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003593","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002322","name":"Coordena\u00e7\u00e3o de Aperfei\u00e7oamento de Pessoal de N\u00edvel Superior","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100002322","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100017580","name":"Rede Nacional de Ensino e Pesquisa","doi-asserted-by":"publisher","id":[{"id":"10.13039\/100017580","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004586","name":"Funda\u00e7\u00e3o Carlos Chagas Filho de Amparo \u00e0 Pesquisa do Estado do Rio de Janeiro","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004586","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2023]]},"DOI":"10.1109\/access.2023.3269980","type":"journal-article","created":{"date-parts":[[2023,4,24]],"date-time":"2023-04-24T18:31:53Z","timestamp":1682361113000},"page":"41928-41953","source":"Crossref","is-referenced-by-count":21,"title":["A Survey on Securing Federated Learning: Analysis of Applications, Attacks, Challenges, and Trends"],"prefix":"10.1109","volume":"11","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5072-8102","authenticated-orcid":false,"given":"Helio N. Cunha","family":"Neto","sequence":"first","affiliation":[{"name":"MídiaCom, PPGEET, Universidade Federal Fluminense (UFF), Niterói, Brazil"}]},{"given":"Jernej","family":"Hribar","sequence":"additional","affiliation":[{"name":"Department for Communication Systems, Jožef Stefan Institute, Ljubljana, Slovenia"}]},{"given":"Ivana","family":"Dusparic","sequence":"additional","affiliation":[{"name":"School of Computer Science, Trinity College Dublin, Dublin 2, Ireland"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1279-7366","authenticated-orcid":false,"given":"Diogo Menezes Ferrazani","family":"Mattos","sequence":"additional","affiliation":[{"name":"MídiaCom, PPGEET, Universidade Federal Fluminense (UFF), Niterói, Brazil"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9481-6374","authenticated-orcid":false,"given":"Natalia C.","family":"Fernandes","sequence":"additional","affiliation":[{"name":"MídiaCom, PPGEET, Universidade Federal Fluminense (UFF), Niterói, Brazil"}]}],"member":"263","reference":[{"key":"ref57","article-title":"Building decision tree classifier on private data","author":"du","year":"2002"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1145\/1409620.1409624"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611972740.59"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1145\/956755.956776"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2009.191"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1145\/3335741.3335755"},{"key":"ref55","first-page":"1","article-title":"Multiparty computation Goes live","volume":"5628","author":"bogetoft","year":"2009","journal-title":"Review Literature and Arts of the Americas"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1109\/COMST.2020.2970550"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1145\/1247480.1247553"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-25952-7_6"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611972740.21"},{"key":"ref45","first-page":"125","article-title":"Privacy-preserving analysis of vertically partitioned data using secure matrix products","volume":"25","author":"karr","year":"2009","journal-title":"J Offic Statist"},{"key":"ref48","article-title":"Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption","author":"hardy","year":"2017","journal-title":"arXiv 1711 10677"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1145\/1281192.1281275"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1145\/3133956.3133982"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/TIFS.2017.2787987"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1145\/775047.775142"},{"key":"ref43","first-page":"102","article-title":"Privacy-preserving cooperative statistical analysis","author":"du","year":"2001","journal-title":"Proc 17th Annu Comput Secur Appl Conf"},{"key":"ref49","article-title":"Entity resolution and federated learning get a federated resolution","author":"nock","year":"2018","journal-title":"arXiv 1803 04035"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1002\/ima.22424"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.3390\/electronics9091379"},{"key":"ref9","year":"2016","journal-title":"Parlamento Europeu e Conselho da Uni ao Européia Regulamento (ue) 2016\/679"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1186\/s13174-020-00127-2"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.3390\/electronics8030292"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1007\/s12652-017-0520-6"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2017.02.006"},{"key":"ref100","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2019.2940820"},{"key":"ref101","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-14880-5_2"},{"key":"ref40","article-title":"Federated AI for building AI solutions across multiple agencies","author":"verma","year":"2018","journal-title":"arXiv 1809 10036"},{"key":"ref35","first-page":"1223","article-title":"More effective distributed ML via a stale synchronous parallel parameter server","author":"ho","year":"2013","journal-title":"Advances in neural information processing systems"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1145\/2934664"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-7908-2604-3_16"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/JSAC.2019.2904348"},{"key":"ref31","doi-asserted-by":"crossref","first-page":"5344e","DOI":"10.1002\/cpe.5344","article-title":"Toward a monitoring and threat detection system based on stream processing as a virtual network function for big data","volume":"31","author":"lopez","year":"2019","journal-title":"Concurrency Comput Pract Exper"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2021.106775"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1145\/1327452.1327492"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/BigData.2017.8258338"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-32692-0_16"},{"key":"ref38","article-title":"Federated learning for mobile keyboard prediction","author":"hard","year":"2018","journal-title":"arXiv 1811 03604"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2020.2975749"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2021.3077803"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/MSEC.2020.3039941"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1186\/s42400-021-00105-6"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/TMC.2020.3045266"},{"key":"ref22","first-page":"16070","article-title":"Attack of the tails: Yes, you really can backdoor federated learning","volume":"33","author":"wang","year":"2020","journal-title":"Advances in neural information processing systems"},{"key":"ref21","first-page":"17","article-title":"Privacy in pharmacogenetics: An end-to-end case study of personalized warfarin dosing","author":"fredrikson","year":"2014","journal-title":"Proc 23rd USENIX Secur Symp (USENIX Secur )"},{"key":"ref28","article-title":"Threats to federated learning: A survey","author":"lyu","year":"2020","journal-title":"arXiv 2003 02133"},{"key":"ref27","article-title":"The PRISMA 2020 statement: An updated guideline for reporting systematic reviews","volume":"10","author":"page","year":"2021","journal-title":"A Systematic Review"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2020.10.007"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/ICC.2019.8761315"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2015.2461602"},{"key":"ref15","first-page":"1273","article-title":"Communication-efficient learning of deep networks from decentralized data","volume":"54","author":"mcmahan","year":"2017","journal-title":"Proc 20th Int Conf Artif Intell Statist (AISTATS)"},{"key":"ref128","doi-asserted-by":"publisher","DOI":"10.1109\/GLOBECOM42002.2020.9322159"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/COMST.2020.2986024"},{"key":"ref129","doi-asserted-by":"publisher","DOI":"10.1109\/ICC40277.2020.9148979"},{"key":"ref97","article-title":"Expanding the reach of federated learning by reducing client resource requirements","author":"caldas","year":"2018","journal-title":"arXiv 1812 07210"},{"key":"ref126","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.2968399"},{"key":"ref96","article-title":"Federated learning: Strategies for improving communication efficiency","author":"kone?n?","year":"2016","journal-title":"arXiv 1610 05492"},{"key":"ref127","doi-asserted-by":"publisher","DOI":"10.1109\/MeditCom55741.2022.9928621"},{"key":"ref11","year":"2018","journal-title":"Lei n 13 709 de 14 de Agosto de"},{"key":"ref99","doi-asserted-by":"publisher","DOI":"10.1109\/ICDCS.2019.00099"},{"key":"ref124","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2919736"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2022.3217201"},{"key":"ref98","first-page":"1","article-title":"eSGD: Communication efficient distributed deep learning on the edge","author":"tao","year":"2018","journal-title":"Proc USENIX Workshop Hot Topics Edge Comput (HotEdge)"},{"key":"ref125","doi-asserted-by":"publisher","DOI":"10.1109\/JSTARS.2021.3120724"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2019.2942929"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.3390\/app8122663"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijmedinf.2018.01.007"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/GLOCOM.2018.8647927"},{"key":"ref93","article-title":"Towards federated learning at scale: System design","author":"bonawitz","year":"2019","journal-title":"arXiv 1902 01046"},{"key":"ref133","doi-asserted-by":"publisher","DOI":"10.1109\/JSTSP.2017.2787979"},{"key":"ref92","doi-asserted-by":"publisher","DOI":"10.1145\/3196494.3196522"},{"key":"ref134","doi-asserted-by":"publisher","DOI":"10.1109\/TVT.2017.2760281"},{"key":"ref95","doi-asserted-by":"publisher","DOI":"10.1109\/VCIP.2018.8698609"},{"key":"ref131","doi-asserted-by":"publisher","DOI":"10.1109\/JBHI.2020.3040015"},{"key":"ref94","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2022.3198176"},{"key":"ref132","doi-asserted-by":"publisher","DOI":"10.1016\/j.comnet.2021.108693"},{"key":"ref130","doi-asserted-by":"publisher","DOI":"10.1109\/MIS.2020.2988604"},{"key":"ref91","doi-asserted-by":"publisher","DOI":"10.1145\/3133956.3134012"},{"key":"ref90","doi-asserted-by":"publisher","DOI":"10.1109\/TCBB.2019.2940583"},{"key":"ref89","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2020.3033171"},{"key":"ref86","first-page":"1223","article-title":"Large scale distributed deep networks","author":"dean","year":"2012","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref85","doi-asserted-by":"publisher","DOI":"10.1109\/MIS.2020.2993966"},{"key":"ref88","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/2020.findings-emnlp.128"},{"key":"ref135","doi-asserted-by":"publisher","DOI":"10.1007\/0-387-34471-3"},{"key":"ref87","article-title":"Practical defences against model inversion attacks for split neural networks","author":"titcombe","year":"2021","journal-title":"arXiv 2104 05743"},{"key":"ref82","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-63076-8_13"},{"key":"ref81","doi-asserted-by":"publisher","DOI":"10.1109\/TDSC.2019.2952332"},{"key":"ref84","doi-asserted-by":"publisher","DOI":"10.1145\/2810103.2813677"},{"key":"ref83","article-title":"Incentivizing data contribution in cross-silo federated learning","author":"huang","year":"2022","journal-title":"arXiv 2203 03885"},{"key":"ref80","article-title":"On-device federated learning via blockchain and its latency analysis","author":"kim","year":"2018","journal-title":"arXiv 1808 03949"},{"key":"ref79","first-page":"3521","article-title":"The hidden vulnerability of distributed learning in Byzantium","volume":"80","author":"el mhamdi","year":"2018","journal-title":"Proc 35th Int Conf Mach Learn in Proceedings of Machine Learning Research"},{"key":"ref108","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref78","first-page":"5650","article-title":"Byzantine-robust distributed learning: Towards optimal statistical rates","volume":"80","author":"yin","year":"2018","journal-title":"Proc 35th Int Conf Mach Learn in Proceedings of Machine Learning Research"},{"key":"ref109","article-title":"A communication efficient collaborative learning framework for distributed features","author":"liu","year":"2019","journal-title":"arXiv 1912 11187"},{"key":"ref106","first-page":"429","article-title":"Federated optimization in heterogeneous networks","volume":"2","author":"li","year":"2020","journal-title":"Proc Mach Learn Syst"},{"key":"ref107","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0230706"},{"key":"ref75","first-page":"11372","article-title":"CRFL: Certifiably robust federated learning against backdoor attacks","author":"xie","year":"2021","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref104","first-page":"4424","article-title":"Federated multi-task learning","author":"smith","year":"2017","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref74","first-page":"508","article-title":"AUROR: Defending against poisoning attacks in collaborative deep learning systems","author":"shen","year":"2016","journal-title":"Proc 32nd Annu Conf Comput Secur Appl (ACSAC)"},{"key":"ref105","article-title":"Variational federated multi-task learning","author":"corinzia","year":"2019","journal-title":"arXiv 1906 06268"},{"key":"ref77","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2022.3153135"},{"key":"ref102","article-title":"Asynchronous federated optimization","author":"xie","year":"2019","journal-title":"arXiv 1903 03934"},{"key":"ref76","first-page":"1310","article-title":"Certified adversarial robustness via randomized smoothing","author":"cohen","year":"2019","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref103","article-title":"Communication-efficient federated learning with acceleration of global momentum","author":"kim","year":"2022","journal-title":"arXiv 2201 03172"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1007\/s12243-019-00744-4"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1145\/3298981"},{"key":"ref71","first-page":"2938","article-title":"How to backdoor federated learning","volume":"108","author":"bagdasaryan","year":"2020","journal-title":"Mach Learn Res"},{"key":"ref111","first-page":"3329","article-title":"Distributed mean estimation with limited communication","author":"suresh","year":"2017","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref70","first-page":"634","article-title":"Analyzing federated learning through an adversarial lens","author":"bhagoji","year":"2019","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref112","doi-asserted-by":"publisher","DOI":"10.21437\/Interspeech.2015-354"},{"key":"ref73","doi-asserted-by":"publisher","DOI":"10.1109\/ICDCS51616.2021.00086"},{"key":"ref72","doi-asserted-by":"publisher","DOI":"10.3390\/fi13030073"},{"key":"ref110","first-page":"97","article-title":"Learning transferable features with deep adaptation networks","author":"long","year":"2015","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref68","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-58951-6_24"},{"key":"ref119","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.3041793"},{"key":"ref67","first-page":"1623","article-title":"Local model poisoning attacks to byzantine-robust federated learning","author":"fang","year":"2020","journal-title":"Proc 29th USENIX Conf Secur Symp"},{"key":"ref117","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3453476","article-title":"Federated learning for smart healthcare: A survey","volume":"55","author":"nguyen","year":"2022","journal-title":"ACM Comput Surv"},{"key":"ref69","article-title":"Can you really backdoor federated learning?","author":"sun","year":"2019","journal-title":"arXiv 1911 07963"},{"key":"ref118","doi-asserted-by":"publisher","DOI":"10.1109\/NetSoft54395.2022.9844024"},{"key":"ref64","article-title":"Mitigating sybils in federated learning poisoning","author":"fung","year":"2018","journal-title":"arXiv 1808 04866"},{"key":"ref115","doi-asserted-by":"publisher","DOI":"10.1109\/ICDCS.2019.00080"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2022.3162397"},{"key":"ref116","doi-asserted-by":"publisher","DOI":"10.1109\/GLOBECOM38437.2019.9013587"},{"key":"ref66","doi-asserted-by":"publisher","DOI":"10.1109\/TrustCom\/BigDataSE.2019.00057"},{"key":"ref113","doi-asserted-by":"publisher","DOI":"10.1023\/A:1019956318069"},{"key":"ref65","first-page":"1","article-title":"DBA: Distributed backdoor attacks against federated learning","author":"xie","year":"2020","journal-title":"Proc Int Conf Learn Represent"},{"key":"ref114","doi-asserted-by":"publisher","DOI":"10.1023\/A:1007379606734"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1109\/GLOBECOM38437.2019.9014272"},{"key":"ref122","doi-asserted-by":"publisher","DOI":"10.1109\/MNET.011.2000286"},{"key":"ref123","doi-asserted-by":"publisher","DOI":"10.1109\/MNET.2019.1800286"},{"key":"ref62","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2020.3022911"},{"key":"ref120","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.3041641"},{"key":"ref61","doi-asserted-by":"publisher","DOI":"10.1109\/TDSC.2015.2484326"},{"key":"ref121","doi-asserted-by":"publisher","DOI":"10.1016\/j.phycom.2020.101157"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/10005208\/10107622.pdf?arnumber=10107622","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,11]],"date-time":"2023-12-11T10:28:52Z","timestamp":1702290532000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/10107622\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023]]},"references-count":135,"URL":"https:\/\/doi.org\/10.1109\/access.2023.3269980","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023]]}}}