{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T20:21:00Z","timestamp":1740169260796,"version":"3.37.3"},"reference-count":42,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2022,1,1]],"date-time":"2022-01-01T00:00:00Z","timestamp":1640995200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2022]]},"DOI":"10.1109\/access.2022.3148703","type":"journal-article","created":{"date-parts":[[2022,2,1]],"date-time":"2022-02-01T20:38:07Z","timestamp":1643747887000},"page":"15860-15875","source":"Crossref","is-referenced-by-count":17,"title":["Admission Control and Virtual Network Embedding in 5G Networks: A Deep Reinforcement-Learning Approach"],"prefix":"10.1109","volume":"10","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-4712-3767","authenticated-orcid":false,"given":"Sebastian","family":"Troia","sequence":"first","affiliation":[]},{"given":"Andres Felipe Rodriguez","family":"Vanegas","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-6292-7915","authenticated-orcid":false,"given":"Ligia Maria Moreira","family":"Zorello","sequence":"additional","affiliation":[]},{"given":"Guido","family":"Maier","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-73703-0_5"},{"key":"ref2","volume-title":"IMT Vision\u2013Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond","volume":"2083","author":"Series","year":"2015"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/MNET.2014.6963800"},{"key":"ref4","article-title":"Network functions virtualisation: An introduction, benefits, enablers, challenges and call for action","volume-title":"Proc. SDN OpenFlow World Congr.","volume":"48","author":"Chiosi"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/JSAC.2017.2760418"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/SURV.2013.013013.00155"},{"volume-title":"3GPP TSG RAN WG1 Meeting 87","year":"2016","key":"ref7"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/TCOMM.2020.3040307"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/LCOMM.2019.2900044"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/TMC.2019.2896950"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/JLT.2019.2896138"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2020.2988644"},{"volume-title":"Reinforcement Learning: An Introduction","year":"2018","author":"Sutton","key":"ref13"},{"key":"ref14","article-title":"Mastering chess and Shogi by self-play with a general reinforcement learning algorithm","author":"David","year":"2017","journal-title":"arXiv:1712.01815"},{"key":"ref15","first-page":"1928","article-title":"Asynchronous methods for deep reinforcement learning","volume-title":"Proc. Int. Conf. Mach. Learn.","author":"Mnih"},{"volume-title":"Metro-Haul Project","year":"2019","key":"ref16"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/JSYST.2019.2904667"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/JLT.2019.2924345"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/TNET.2019.2924471"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/CNSM.2016.7818395"},{"key":"ref21","first-page":"21","volume-title":"IMT Vision\u2013Framework and Overall Objectives of the Future Development of IMT for 2020 and Beyond","volume":"2083","author":"Series","year":"2015"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/TNSM.2013.092813.130397"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/ICIN48450.2020.9059440"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/NOMS47738.2020.9110442"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2822398"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2909670"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/JSAC.2020.2986662"},{"volume-title":"Service-based architecture for 5G core networks","year":"2017","author":"Brown","key":"ref28"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-22236-9_5"},{"volume-title":"Minimum Requirements Related to Technical Performance for IMT-2020 Radio Interface(s)","year":"2020","key":"ref30"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/TG.2018.2877047"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/TNSM.2021.3049381"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/TWC.2021.3060514"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1145\/1355734.1355737"},{"volume-title":"Introduction to Algorithms","year":"2009","author":"Cormen","key":"ref35"},{"volume-title":"The Floyd-Warshall Algorithm for Shortest Paths","year":"2017","author":"Wimmer","key":"ref36"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1126\/science.286.5439.509"},{"article-title":"NGMN 5G white paper","year":"2015","author":"Hattachi","key":"ref38"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1162\/neco.1997.9.8.1735"},{"volume-title":"Neural Networks: A Comprehensive Foundation","year":"1999","author":"Haykin","key":"ref40"},{"key":"ref41","article-title":"Playing Atari with deep reinforcement learning","author":"Mnih","year":"2013","journal-title":"arXiv:1312.5602"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/MSP.2017.2743240"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/9668973\/09701355.pdf?arnumber=9701355","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,1,17]],"date-time":"2024-01-17T22:49:44Z","timestamp":1705531784000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9701355\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022]]},"references-count":42,"URL":"https:\/\/doi.org\/10.1109\/access.2022.3148703","relation":{},"ISSN":["2169-3536"],"issn-type":[{"type":"electronic","value":"2169-3536"}],"subject":[],"published":{"date-parts":[[2022]]}}}