{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,9]],"date-time":"2025-04-09T12:36:12Z","timestamp":1744202172384,"version":"3.37.3"},"reference-count":71,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100004055","name":"King Fahd University of Petroleum and Minerals (KFUPM), Saudi Arabia","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004055","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2021]]},"DOI":"10.1109\/access.2021.3134138","type":"journal-article","created":{"date-parts":[[2021,12,8]],"date-time":"2021-12-08T21:12:04Z","timestamp":1638997924000},"page":"163815-163830","source":"Crossref","is-referenced-by-count":45,"title":["Impact of Hyperparameter Tuning on Machine Learning Models in Stock Price Forecasting"],"prefix":"10.1109","volume":"9","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-1322-8197","authenticated-orcid":false,"given":"Kazi Ekramul","family":"Hoque","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-2146-9348","authenticated-orcid":false,"given":"Hamoud","family":"Aljamaan","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref71","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijforecast.2015.11.017"},{"key":"ref70","doi-asserted-by":"publisher","DOI":"10.3923\/jas.2010.950.958"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1002\/bbb.2140"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/CCIP.2015.7100687"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1016\/S0169-2070(01)00111-X"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1007\/BF00153759"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1023\/B:STCO.0000035301.49549.88"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4302-5990-9_4"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1016\/j.infsof.2021.106648"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-35289-8_25"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-7908-2604-3_16"},{"key":"ref34","first-page":"63","article-title":"Gaussian processes in machine learning","author":"rasmussen","year":"2003","journal-title":"Machine Learning Summer School"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1136\/bmj.310.6973.170"},{"key":"ref62","article-title":"The simple difference formula: An approach to teaching nonparametric correlation","volume":"3","author":"kerby","year":"2014","journal-title":"Journal of Comparative Psychology"},{"journal-title":"Biostatistical Analysis","year":"1999","author":"zar","key":"ref61"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1136\/bmj.331.7521.903"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1007\/BF00116251"},{"key":"ref64","doi-asserted-by":"publisher","DOI":"10.4300\/JGME-D-12-00156.1"},{"key":"ref27","first-page":"173","article-title":"An empirical analysis of stock market price prediction using arima and SVM","author":"shrivastav","year":"2019","journal-title":"Proc 6th Int Conf Comput Sustain Global Develop (INDIACom)"},{"key":"ref65","doi-asserted-by":"publisher","DOI":"10.2466\/03.49.PR0.112.3.835-844"},{"key":"ref66","doi-asserted-by":"publisher","DOI":"10.1145\/3416508.3417114"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/72.788640"},{"key":"ref67","first-page":"17","article-title":"The effect of kernel values in support vector machine to forecasting performance of financial time series","volume":"4","author":"altan","year":"2019","journal-title":"Joint Cognitive Systems"},{"key":"ref68","doi-asserted-by":"publisher","DOI":"10.1016\/j.cie.2018.04.042"},{"key":"ref69","doi-asserted-by":"publisher","DOI":"10.1016\/j.apenergy.2019.114243"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/ICECA49313.2020.9297652"},{"key":"ref1","volume":"64","author":"teweles","year":"1998","journal-title":"Stock Market"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1016\/j.omega.2004.07.024"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/UKSim.2014.67"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/ICECA.2017.8212716"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1007\/978-0-306-47630-3"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1080\/13504850600993598"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.3030226"},{"key":"ref25","first-page":"96","article-title":"Sensitivity of different machine learning algorithms to noise","volume":"26","author":"atla","year":"2011","journal-title":"J Comput Sci Colleges"},{"key":"ref50","first-page":"1","article-title":"Practical Bayesian optimization of machine learning algorithms","volume":"25","author":"snoek","year":"2012","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref51","article-title":"Grid search, random search, genetic algorithm: A big comparison for NAS","author":"liashchynskyi","year":"2019","journal-title":"arXiv 1912 06059"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4612-4380-9_16"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1198\/jasa.2011.r10138"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1057\/jors.2014.103"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijforecast.2006.03.001"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1016\/j.energy.2018.05.146"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1016\/j.eneco.2017.05.023"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1214\/09-SS054"},{"journal-title":"Forecasting Principles and Practice","year":"2018","author":"hyndman","key":"ref52"},{"key":"ref10","first-page":"115","article-title":"The Saudi securities law: Regulation of the Tadawul stock market, issuers, and securities professionals under the Saudi capital market law of 2003","volume":"18","author":"gouda","year":"2012","journal-title":"Ann Surv Int Comput"},{"journal-title":"Tadawul Annual Report","year":"2019","key":"ref11"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1007\/s11227-020-03347-2"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1201\/9780849333750"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/j.ecolmodel.2019.06.002"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-05318-5"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1002\/widm.1301"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2020.07.061"},{"key":"ref17","article-title":"Automated architecture design for deep neural networks","author":"abreu","year":"2019","journal-title":"arXiv 1908 10714"},{"article-title":"A comparative study of black-box optimization algorithms for tuning of hyper-parameters in deep neural networks","year":"2018","author":"steinholtz","key":"ref18"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/S0360-8352(98)00066-7"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1007\/s40745-020-00307-8"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.18517\/ijaseit.10.1.10235"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2018.2794389"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/ITNEC.2019.8729026"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/ICADIWT.2011.6041425"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.jfds.2018.04.003"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1162\/089976600300015187"},{"article-title":"Corporate governance regulations in the Kingdom of Saudi Arabia","year":"2006","author":"authority","key":"ref9"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/32.6156"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1111\/j.2517-6161.1996.tb02080.x"},{"key":"ref48","first-page":"281","article-title":"Random search for hyper-parameter optimization","volume":"13","author":"bergstra","year":"2012","journal-title":"J Mach Learn Res"},{"key":"ref47","first-page":"2825","article-title":"Scikit-learn: Machine learning in Python","volume":"12","author":"pedregosa","year":"2017","journal-title":"J Mach Learn Res"},{"key":"ref42","first-page":"34","article-title":"Overview and recent advances in partial least squares","author":"rosipal","year":"2005","journal-title":"Proc Int Stat Optim Perspect Workshop Subspace Latent Struct Feature Selection"},{"journal-title":"Fundamental Statistics in Psychology and Education","year":"1950","author":"guilford","key":"ref41"},{"key":"ref44","first-page":"515","article-title":"Ridge regression learning algorithm in dual variables","author":"saunders","year":"1998","journal-title":"Proc 15th Int Conf Mach Learn"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511801389"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/9312710\/09643011.pdf?arnumber=9643011","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,3,28]],"date-time":"2022-03-28T21:20:22Z","timestamp":1648502422000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9643011\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"references-count":71,"URL":"https:\/\/doi.org\/10.1109\/access.2021.3134138","relation":{},"ISSN":["2169-3536"],"issn-type":[{"type":"electronic","value":"2169-3536"}],"subject":[],"published":{"date-parts":[[2021]]}}}