{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,3,29]],"date-time":"2022-03-29T19:20:58Z","timestamp":1648581658416},"reference-count":31,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"},{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"am","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100003725","name":"Basic Science Research Program through the National Research Foundation of Korea","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100003725","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100010002","name":"Ministry of Education","doi-asserted-by":"publisher","award":["GR2019R1D1A3A03103736"],"id":[{"id":"10.13039\/100010002","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2021]]},"DOI":"10.1109\/access.2021.3131775","type":"journal-article","created":{"date-parts":[[2021,11,30]],"date-time":"2021-11-30T23:36:50Z","timestamp":1638315410000},"page":"159371-159381","source":"Crossref","is-referenced-by-count":0,"title":["Cascade Convolution Neural Network for Point Set Generation"],"prefix":"10.1109","volume":"9","author":[{"given":"Chenmou","family":"Wu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2581-5268","authenticated-orcid":false,"given":"Hyo Jong","family":"Lee","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2010.5539790"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1023\/A:1026543900054"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1145\/3072959.3073599"},{"key":"ref11","article-title":"ShapeNet: An information-rich 3D model repository","author":"chang","year":"2015","journal-title":"arXiv 1512 03012"},{"key":"ref12","first-page":"121","article-title":"Stochastic gradient VB and the variational auto-encoder","volume":"19","author":"kingma","year":"2014","journal-title":"Proc 2nd Int Conf Learn Represent (ICLR)"},{"key":"ref13","first-page":"82","article-title":"Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling","author":"wu","year":"2016","journal-title":"Proc Int Conf Neural Inf Process"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00352"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1145\/3326362"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.114"},{"key":"ref17","first-page":"628","article-title":"3D-R2N2: A unified approach for single and multi-view 3D object reconstruction","author":"choy","year":"2016","journal-title":"Proc Eur Conf Comput Vis (ECCV)"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/3DV.2017.00038"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00306"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.123"},{"key":"ref4","first-page":"52","article-title":"Pixel2mesh: Generating 3D mesh models from single RGB images","author":"wang","year":"2018","journal-title":"Proc Eur Conf Comput Vis (ECCV)"},{"key":"ref27","first-page":"424","article-title":"3D U-Net: Learning dense volumetric segmentation from sparse annotation","author":"\u00e7i\u00e7ek","year":"2016","journal-title":"Proc Int Conf Med Image Comput Comput -Assist Intervent"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.264"},{"key":"ref6","article-title":"Learning representations and generative models for 3D point clouds","author":"achlioptas","year":"2017","journal-title":"arXiv 1707 02392"},{"key":"ref29","first-page":"249","article-title":"Understanding the difficulty of training deep feedforward neural networks","author":"glorot","year":"2010","journal-title":"Proc 13th Int Conf Artif Intell Statist"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.3390\/s20144032"},{"key":"ref8","first-page":"926","article-title":"The structure-from-motion reconstruction pipeline—A survey with focus on short image sequences","volume":"46","author":"h\u00e4ming","year":"2010","journal-title":"Kybernetika"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/34.273735"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1016\/j.displa.2021.102053"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1007\/s10462-012-9365-8"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/ICOISS.2013.6678395"},{"key":"ref20","first-page":"365","article-title":"Image2mesh: A learning framework for single image 3D reconstruction","author":"pontes","year":"2018","journal-title":"Proc Asian Conf Comput Vis"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01237-3_49"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00411"},{"key":"ref24","first-page":"5099","article-title":"PointNet++: Deep hierarchical feature learning on point sets in a metric space","author":"qi","year":"2017","journal-title":"Proc Neural Inf Process Syst (NIPS)"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.16"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00979"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.99"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/9312710\/09631274.pdf?arnumber=9631274","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,3,8]],"date-time":"2022-03-08T21:50:39Z","timestamp":1646776239000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9631274\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"references-count":31,"URL":"https:\/\/doi.org\/10.1109\/access.2021.3131775","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021]]}}}