{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,19]],"date-time":"2025-03-19T14:28:06Z","timestamp":1742394486929,"version":"3.37.3"},"reference-count":52,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2021,1,1]],"date-time":"2021-01-01T00:00:00Z","timestamp":1609459200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2021]]},"DOI":"10.1109\/access.2021.3070685","type":"journal-article","created":{"date-parts":[[2021,4,9]],"date-time":"2021-04-09T02:33:27Z","timestamp":1617935607000},"page":"54190-54200","source":"Crossref","is-referenced-by-count":101,"title":["Multi-Scale Attention Network for Diabetic Retinopathy Classification"],"prefix":"10.1109","volume":"9","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-8820-2843","authenticated-orcid":false,"given":"Mohammad T.","family":"Al-Antary","sequence":"first","affiliation":[]},{"given":"Yasmine","family":"Arafa","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"crossref","first-page":"1","DOI":"10.3390\/sym11010001","article-title":"Fundus image classification using VGG-19 architecture with PCA and SVD","volume":"11","author":"mateen","year":"2018","journal-title":"Symmetry"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1038\/s41551-018-0195-0"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/ICIICT1.2019.8741456"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/ISSPIT47144.2019.9001846"},{"key":"ref31","doi-asserted-by":"crossref","first-page":"914","DOI":"10.3390\/electronics9060914","article-title":"Blended multi-modal deep ConvNet features for diabetic retinopathy severity prediction","volume":"9","author":"bodapati","year":"2020","journal-title":"Electronics"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/TBME.2020.3027231"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2019.08.079"},{"key":"ref36","article-title":"Improved microaneurysm detection using deep neural networks","author":"haloi","year":"2015","journal-title":"arXiv 1505 04424"},{"key":"ref35","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1016\/j.procs.2016.07.014","article-title":"Convolutional neural networks for diabetic retinopathy","volume":"90","author":"pratt","year":"2016","journal-title":"Procedia Comput Sci"},{"key":"ref34","article-title":"Transfer learning based detection of diabetic retinopathy from small dataset","author":"hagos","year":"2019","journal-title":"arXiv 1905 07203"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2017.04.012"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/JBHI.2013.2294635"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2903171"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1152\/physrev.1991.71.2.447"},{"key":"ref1","first-page":"5s","article-title":"Diagnosis and classification of diabetes mellitus","volume":"28","author":"mellitus","year":"2005","journal-title":"Diabetes Care"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1001\/jama.2016.17216"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2013.11.014"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2012.07.002"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2012.2227119"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/TBME.2017.2752701"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1016\/j.compmedimag.2015.03.003"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2014.05.004"},{"key":"ref50","first-page":"1","article-title":"Very deep convolutional networks for large-scale image recognition","author":"simonyan","year":"2015","journal-title":"Proc ICLR"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"journal-title":"Retinal Imaging How it Works & Why It’s Important","year":"2015","author":"aujla","key":"ref52"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1145\/3369973.3369979"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/ICCVW.2019.00052"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/ISM.2016.0049"},{"key":"ref12","first-page":"251","article-title":"Attention deeplabv3+: Multi-level context attention mechanism for skin lesion segmentation","author":"azad","year":"2020","journal-title":"Proc Eur Conf Comput Vis"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2019.08.002"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1186\/s12938-019-0675-9"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1155\/2019\/6142839"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2017.08.050"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/IWAIT.2018.8369794"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1016\/j.ophtha.2017.02.008"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1136\/bjo.2008.151126"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.2337\/diabetes.51.10.3107"},{"article-title":"The vertebrate retina: Principles of structure and function","year":"1973","author":"rodieck","key":"ref3"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.ophtha.2010.08.003"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.3109\/02713683.2010.514659"},{"key":"ref8","first-page":"766","article-title":"Automatic screening of retinal lesions for grading diabetic retinopathy","volume":"16","author":"sharif","year":"2019","journal-title":"Int Arab J Inf Technol"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1001\/jamaophthalmol.2017.2553"},{"key":"ref49","article-title":"MobileNets: Efficient convolutional neural networks for mobile vision applications","author":"howard","year":"2017","journal-title":"arXiv 1704 04861"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/42.730405"},{"journal-title":"APTOS 2019 Blindness Detection","year":"2020","key":"ref46"},{"journal-title":"Diabetic Retinopathy Detection","year":"2020","key":"ref45"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"ref47","first-page":"679","article-title":"Diabetic retinopathy detection using transfer learning and deep learning","volume":"1176","author":"gangwar","year":"2021","journal-title":"Evolution in Computational Intelligence"},{"key":"ref42","first-page":"267","article-title":"Zoom-in-Net: Deep mining lesions for diabetic retinopathy detection","author":"wang","year":"2017","journal-title":"Proc Int Conf Med Imag Comput Comput -Assist Intervent"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2018.2794988"},{"journal-title":"Kaggle diabetic retinopathy detection competition report","year":"2015","author":"graham","key":"ref44"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2019.8803074"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/9312710\/09393898.pdf?arnumber=9393898","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,26]],"date-time":"2022-01-26T10:45:46Z","timestamp":1643193946000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9393898\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"references-count":52,"URL":"https:\/\/doi.org\/10.1109\/access.2021.3070685","relation":{},"ISSN":["2169-3536"],"issn-type":[{"type":"electronic","value":"2169-3536"}],"subject":[],"published":{"date-parts":[[2021]]}}}