{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,3,28]],"date-time":"2024-03-28T22:34:16Z","timestamp":1711665256997},"reference-count":23,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100010193","name":"Korea Electric Power Corporation","doi-asserted-by":"publisher","award":["R18XA05"],"id":[{"id":"10.13039\/501100010193","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100008783","name":"Electronics and Communications Research Institute (ETRI) & National Research Council of Science and Technology","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100008783","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Korea Government [Ministry of Science and ICT (MSIT)]","award":["19ZS1200"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/access.2020.3035421","type":"journal-article","created":{"date-parts":[[2020,11,3]],"date-time":"2020-11-03T20:43:16Z","timestamp":1604436196000},"page":"199120-199132","source":"Crossref","is-referenced-by-count":7,"title":["Cooperating Edge Cloud-Based Hybrid Online Learning for Accelerated Energy Data Stream Processing in Load Forecasting"],"prefix":"10.1109","volume":"8","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3687-2989","authenticated-orcid":false,"given":"Changha","family":"Lee","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3842-3821","authenticated-orcid":false,"given":"Seong-Hwan","family":"Kim","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3970-7308","authenticated-orcid":false,"given":"Chan-Hyun","family":"Youn","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2001.989589"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.587"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01258-8_15"},{"key":"ref13","article-title":"Efficient lifelong learning with A-GEM","author":"chaudhry","year":"2018","journal-title":"arXiv 1812 00420"},{"key":"ref14","first-page":"2990","article-title":"Continual learning with deep generative replay","author":"shin","year":"2017","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref15","first-page":"15","article-title":"Cosine similarity scoring without score normalization techniques","author":"dehak","year":"2010","journal-title":"Proc Odyssey"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1145\/3004295"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/LSP.2015.2421935"},{"key":"ref18","author":"tan","year":"2018","journal-title":"Introduction to Data Mining"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijforecast.2008.07.003"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2009.02.013"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2018.01.015"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/NNSP.2003.1318049"},{"key":"ref5","first-page":"58","article-title":"The problem of concept drift: Definitions and related work","volume":"106","author":"tsymbal","year":"2004","journal-title":"Comput Sci Dep Trinity Coll Dublin"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v34i01.5444"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-63962-8_326-1"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/ICCSII.2012.6454392"},{"key":"ref1","first-page":"459","article-title":"Study on AMI system of KEPCO","author":"kim","year":"2010","journal-title":"Proc Int Conf Inf Commun Technol Converg (ICTC)"},{"key":"ref9","first-page":"6467","article-title":"Gradient episodic memory for continual learning","author":"lopez-paz","year":"2017","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.2307\/2684697"},{"key":"ref22","first-page":"265","article-title":"Tensorflow: A system for large-scale machine learning","author":"abadi","year":"2016","journal-title":"Proc of USENIX Symp on Operating Systems Design and Implementation (OSDI)"},{"key":"ref21","first-page":"725","article-title":"Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods","volume":"5","author":"valentini","year":"2004","journal-title":"J Mach Learn Res"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.3390\/en10101668"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8948470\/09247218.pdf?arnumber=9247218","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,12]],"date-time":"2022-01-12T15:57:49Z","timestamp":1642003069000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9247218\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":23,"URL":"https:\/\/doi.org\/10.1109\/access.2020.3035421","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020]]}}}