{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,12,30]],"date-time":"2024-12-30T18:55:54Z","timestamp":1735584954199},"reference-count":41,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100010193","name":"Korea Electric Power Corporation","doi-asserted-by":"publisher","award":["R18XA05"],"id":[{"id":"10.13039\/501100010193","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Electronics and Communications Research Institute (ETRI) and the National Research Council of Science and Technology"},{"name":"Korea Government [Ministry of Science and ICTA (MSIT)]","award":["19ZS1200"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/access.2020.3033771","type":"journal-article","created":{"date-parts":[[2020,10,26]],"date-time":"2020-10-26T20:24:57Z","timestamp":1603743897000},"page":"195341-195358","source":"Crossref","is-referenced-by-count":7,"title":["An Accelerated Edge Cloud System for Energy Data Stream Processing Based on Adaptive Incremental Deep Learning Scheme"],"prefix":"10.1109","volume":"8","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3842-3821","authenticated-orcid":false,"given":"Seong-Hwan","family":"Kim","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3687-2989","authenticated-orcid":false,"given":"Changha","family":"Lee","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3970-7308","authenticated-orcid":false,"given":"Chan-Hyun","family":"Youn","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298878"},{"key":"ref38","article-title":"GAIN: Missing data imputation using generative adversarial nets","author":"yoon","year":"2018","journal-title":"arXiv 1806 02920"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2015.2414355"},{"key":"ref32","article-title":"Adaptive workflow scheduling scheme based on the colored petri-net model in cloud","author":"kim","year":"2014"},{"key":"ref31","article-title":"An overview of gradient descent optimization algorithms","author":"ruder","year":"2016","journal-title":"arXiv 1609 04747"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511804441"},{"key":"ref37","first-page":"5","article-title":"K-nearest neighbor in missing data imputation","volume":"5","author":"malarvizhi","year":"2012","journal-title":"Int J Eng Research & Development"},{"key":"ref36","doi-asserted-by":"crossref","first-page":"512","DOI":"10.1109\/TITS.2009.2026312","article-title":"PPCA-based missing data imputation for traffic flow volume: A systematical approach","volume":"10","author":"qu","year":"2009","journal-title":"IEEE Trans Intell Transp Syst"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1061\/(ASCE)HE.1943-5584.0000767"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1016\/j.rser.2016.10.054"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2016.2609424"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.3390\/s18072220"},{"key":"ref11","first-page":"15","article-title":"Cosine similarity scoring without score normalization techniques","author":"dehak","year":"2010","journal-title":"Proc Odyssey"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1080\/07350015.1995.10524601"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijepes.2014.06.025"},{"key":"ref14","first-page":"459","article-title":"Study on AMI system of KEPCO","author":"kim","year":"2010","journal-title":"Proc Int Conf Inf Commun Technol Converg (ICTC)"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1198\/1061860032544"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/JAS.2019.1911390"},{"key":"ref17","article-title":"The missing piece in complex analytics: Low latency, scalable model management and serving with velox","author":"crankshaw","year":"2014","journal-title":"arXiv 1409 3809"},{"key":"ref18","first-page":"613","article-title":"Clipper: A low-latency online prediction serving system","author":"crankshaw","year":"2017","journal-title":"Proc 14th USENIX Symp Networked Syst Design Implement (NSDI)"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1137\/16M1080173"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1145\/3097983.3098147"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.energy.2019.05.230"},{"key":"ref27","first-page":"217","article-title":"Large scale online learning","author":"bottou","year":"2004","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref3","article-title":"An accelerated streaming data processing scheme based on cnn-lstm hybrid model in energy service platform","author":"bae","year":"2019"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2017.01.078"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1515\/itms-2017-0003"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2011.08.019"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2013.6706768"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1145\/3267809.3267817"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2935389"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1007\/BF00116900"},{"key":"ref1","article-title":"Kemri power economy review","author":"lee","year":"2016"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/ISCA.2018.00012"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1145\/3020078.3021741"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/FPT.2017.8280155"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1155\/2012\/241439"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1145\/2684746.2689060"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.23919\/FPL.2017.8056850"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1145\/3190508.3190517"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/CoolChips.2015.7158532"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8948470\/09239387.pdf?arnumber=9239387","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,12]],"date-time":"2022-01-12T01:09:03Z","timestamp":1641949743000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9239387\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":41,"URL":"https:\/\/doi.org\/10.1109\/access.2020.3033771","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020]]}}}