{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T08:03:20Z","timestamp":1725609800544},"reference-count":55,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["72071018","11901037"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"National Key Research and Development Program of China","award":["2018YFC2000600"]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities, Beijing Sport University, China","doi-asserted-by":"publisher","award":["2020042"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/access.2020.3033580","type":"journal-article","created":{"date-parts":[[2020,10,26]],"date-time":"2020-10-26T20:24:57Z","timestamp":1603743897000},"page":"195062-195073","source":"Crossref","is-referenced-by-count":16,"title":["Detection of Ice Hockey Players and Teams via a Two-Phase Cascaded CNN Model"],"prefix":"10.1109","volume":"8","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0064-5338","authenticated-orcid":false,"given":"Tianxiao","family":"Guo","sequence":"first","affiliation":[]},{"given":"Kuan","family":"Tao","sequence":"additional","affiliation":[]},{"given":"Qingrui","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Yanfei","family":"Shen","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1016\/j.procs.2013.09.249"},{"key":"ref38","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","author":"krizhevsky","year":"2012","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2008.02.011"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2008.02.011"},{"key":"ref31","article-title":"An efficient tracking of multi object visual motion using Hungarian method","volume":"4","author":"nandashri","year":"2015","journal-title":"International Journal of Engine Research"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2018.00236"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-48680-2_22"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-15907-7_15"},{"key":"ref35","first-page":"1","article-title":"Player tracking and analysis of basketball plays","author":"cheshire","year":"2013","journal-title":"Proc Eur Conf Comput Vis"},{"key":"ref34","first-page":"151","article-title":"Camera calibration and player detection in 3D reconstruction","volume":"19","author":"junqing","year":"2008","journal-title":"J Softw"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.5244\/C.31.173"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1080\/24748668.2018.1456886"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1016\/j.cviu.2017.01.001"},{"key":"ref2","first-page":"1","article-title":"Total Hockey Rating (THoR): A comprehensive statistical rating of National Hockey League forwards and defensemen based upon all on-ice events","author":"schuckers","year":"2013","journal-title":"Proceedings of the 10th Annu MIT Sloan Sport Anal Conf"},{"key":"ref1","author":"weissbock","year":"2014","journal-title":"Forecasting Success in the National Hockey League using In-Game Statistics and Textual Data"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2018.2876304"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.234"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.322"},{"key":"ref24","first-page":"91","article-title":"Faster R-CNN: Towards real-time object detection with region proposal networks","author":"ren","year":"2015","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.91"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.81"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.135"},{"key":"ref50","first-page":"1929","article-title":"Dropout: A simple way to prevent neural networks from overfitting","volume":"15","author":"srivastava","year":"2014","journal-title":"J Mach Learn Res"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.3390\/app10093233"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01264-9_45"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46448-0_2"},{"key":"ref53","first-page":"91","article-title":"Faster R-CNN: Towards real-time object detection with region proposal networks","author":"ren","year":"2015","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.3390\/app10082929"},{"key":"ref10","first-page":"1","article-title":"An expected goals model for evaluating NHL teams and players","author":"macdonald","year":"2012","journal-title":"MIT Sloan Sports Anal Conf"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2012.263"},{"key":"ref40","article-title":"Automatic pass annotation from soccer VideoStreams based on object detection and LSTM","author":"sorano","year":"2020","journal-title":"arXiv 2007 06475"},{"key":"ref12","first-page":"875","article-title":"Play recognition using soccer tracking data based on machine learning","author":"imai","year":"2018","journal-title":"Network-Based Information Systems"},{"key":"ref13","doi-asserted-by":"crossref","first-page":"625","DOI":"10.32604\/cmc.2019.05161","article-title":"An automated player detection and tracking in basketball game","volume":"58","author":"santhosh","year":"2019","journal-title":"Comput Mater Continua"},{"key":"ref14","first-page":"1","article-title":"Apples-to-apples: Clustering and ranking NHL players using location information and scoring impact","author":"schulte","year":"2017","journal-title":"MIT Sloan Sports Anal Conf"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1007\/s10618-017-0496-z"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/ICDMW.2014.167"},{"key":"ref17","first-page":"1","article-title":"Possession sketches: Mapping NBA strategies","author":"miller","year":"2017","journal-title":"Proc 11th MIT Sloan Sports Anal Conf"},{"key":"ref18","first-page":"1","article-title":"Classifying NBA offensive plays using neural networks","author":"wang","year":"2016","journal-title":"MIT Sloan Sports Anal Conf"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.3390\/app10010024"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2017.24"},{"key":"ref3","first-page":"1","article-title":"Deep learning of player trajectory representations for team activity analysis","author":"mehrasa","year":"2018","journal-title":"Proc 11th MIT Sloan Sports Anal Conf"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.3390\/app10093013"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1287\/inte.1110.0612"},{"key":"ref8","first-page":"3","article-title":"POINTWISE: Predicting points and valuing decisions in real time with NBA optical tracking data","author":"cervone","year":"2014","journal-title":"Proc 8th MIT Sloan Sports Anal Conf"},{"key":"ref7","first-page":"1","article-title":"Data-driven ghosting using deep imitation learning","author":"le","year":"2017","journal-title":"MIT Sloan Sports Anal Conf"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7299170"},{"key":"ref9","first-page":"1","article-title":"Quality vs quantity: Improved shot prediction in soccer using strategic features from spatiotemporal data","author":"lucey","year":"2014","journal-title":"Proceedings of the 10th Annu MIT Sloan Sport Anal Conf"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2001.990517"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/TCSVT.2015.2511543"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-74549-5_2"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1006\/jcss.1997.1504"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00403"},{"key":"ref41","article-title":"YOLOv3: An incremental improvement","author":"redmon","year":"2018","journal-title":"Computer Vision and Pattern Recognition"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.376"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.5244\/C.31.52"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8948470\/09239271.pdf?arnumber=9239271","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,12,17]],"date-time":"2021-12-17T19:57:01Z","timestamp":1639771021000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9239271\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":55,"URL":"https:\/\/doi.org\/10.1109\/access.2020.3033580","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020]]}}}