{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,29]],"date-time":"2024-08-29T07:07:18Z","timestamp":1724915238689},"reference-count":42,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"name":"Qingdao City Science and Technology","award":["20-4-1-5-nsh"]},{"name":"Qingdao West Coast New District Science and Technology Project","award":["2019-59"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/access.2020.3027738","type":"journal-article","created":{"date-parts":[[2020,9,29]],"date-time":"2020-09-29T20:55:55Z","timestamp":1601412955000},"page":"185786-185795","source":"Crossref","is-referenced-by-count":43,"title":["MSD-Net: Multi-Scale Discriminative Network for COVID-19 Lung Infection Segmentation on CT"],"prefix":"10.1109","volume":"8","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7174-474X","authenticated-orcid":false,"given":"Bingbing","family":"Zheng","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9523-9852","authenticated-orcid":false,"given":"Yaoqi","family":"Liu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1535-6520","authenticated-orcid":false,"given":"Yu","family":"Zhu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5878-8863","authenticated-orcid":false,"given":"Fuli","family":"Yu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-6033-430X","authenticated-orcid":false,"given":"Tianjiao","family":"Jiang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8928-143X","authenticated-orcid":false,"given":"Dawei","family":"Yang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-7544-0551","authenticated-orcid":false,"given":"Tao","family":"Xu","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","first-page":"8026","article-title":"Pytorch: An imperative style, high-performance deep learning library","volume":"2019","author":"paszke","year":"0","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.324"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2020.2996645"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2019.04.025"},{"key":"ref31","first-page":"311","article-title":"3D MRI brain tumor segmentation using autoencoder regularization","author":"myronenko","year":"2018","journal-title":"International MICCAI Brainlesion Workshop"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/3DV.2016.79"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2020.2995965"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2020.3000314"},{"key":"ref34","article-title":"Multi-task deep learning based CT imaging analysis for COVID-19: Classification and Segmentation","author":"amyar","year":"0","journal-title":"medRxiv"},{"key":"ref10","article-title":"Lung infection quantification of COVID-19 in CT images with deep learning","author":"shan","year":"2020","journal-title":"arXiv 2003 04655"},{"key":"ref40","article-title":"A method for stochastic optimization","author":"da","year":"2014","journal-title":"arXiv 1412 6980"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2016.2536809"},{"key":"ref12","article-title":"Transfer learning with edge attention for prostate MRI segmentation","author":"qin","year":"2019","journal-title":"arXiv 1912 09847"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1049\/iet-ipr.2019.0248"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2020.2992546"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.2994762"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/JBHI.2020.3001216"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.3003810"},{"key":"ref18","article-title":"A deep Learning algorithm using CT images to screen for corona virus disease (COVID-19)","author":"wang","year":"0","journal-title":"medRxiv"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"ref28","article-title":"Semantic image segmentation with deep convolutional nets and fully connected CRFs","author":"chen","year":"2014","journal-title":"arXiv 1412 7062"},{"key":"ref4","year":"2020","journal-title":"WHO Director-General’s Opening Remarks at the Media Briefing on COVID-19–11 March 2020"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.549"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1056\/NEJMoa2001017"},{"key":"ref6","year":"0","journal-title":"WHO Clinical Management of COVID-19"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2017.2699184"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/S1473-3099(20)30120-1"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1148\/radiol.2020200236"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/S0140-6736(20)30183-5"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.21037\/atm.2020.03.132"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.jinf.2020.02.017"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/S0140-6736(20)30154-9"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2016.2644615"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-00889-5_1"},{"key":"ref21","first-page":"234","article-title":"U-Net: Convolutional networks for biomedical image segmentation","author":"ronneberger","year":"2015","journal-title":"Proc Int Conf Med Image Comput Comput -Assist Intervent"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2013.12.002"},{"key":"ref24","article-title":"Attention U-Net: Learning where to look for the pancreas","author":"oktay","year":"2018","journal-title":"arXiv 1804 03999"},{"key":"ref41","first-page":"3","article-title":"CBAM: Convolutional block attention module","author":"woo","year":"2018","journal-title":"Proc Eur Conf Comput Vis (ECCV)"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.660"},{"key":"ref26","article-title":"ENet: A deep neural network architecture for real-time semantic segmentation","author":"paszke","year":"2016","journal-title":"ArXiv 1606 02147"},{"key":"ref25","first-page":"424","article-title":"3D U-Net: Learning dense, volumetric segmentation from sparse annotation","author":"\u00e7i\u00e7ek","year":"2016","journal-title":"Proc Int Conf Med Image Comput Comput -Assist Intervent"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8948470\/09208691.pdf?arnumber=9208691","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,12]],"date-time":"2022-01-12T01:08:53Z","timestamp":1641949733000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9208691\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":42,"URL":"https:\/\/doi.org\/10.1109\/access.2020.3027738","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020]]}}}