{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,14]],"date-time":"2024-08-14T05:10:25Z","timestamp":1723612225515},"reference-count":56,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61502289","61806003"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Shanxi Province Key Research and Development Program","award":["201803D31199"]},{"DOI":"10.13039\/501100004480","name":"Natural Science Foundation of Shanxi Province, China","doi-asserted-by":"publisher","award":["201801D221163"],"id":[{"id":"10.13039\/501100004480","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Scientific and Technological Innovation Programs (STIP) of Higher Education Institutions in Shanxi","award":["2016101"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/access.2020.3024690","type":"journal-article","created":{"date-parts":[[2020,9,18]],"date-time":"2020-09-18T20:17:42Z","timestamp":1600460262000},"page":"170248-170260","source":"Crossref","is-referenced-by-count":3,"title":["Unsupervised Dual Learning for Feature and Instance Selection"],"prefix":"10.1109","volume":"8","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-3294-5071","authenticated-orcid":false,"given":"Liang","family":"Du","sequence":"first","affiliation":[]},{"given":"Xin","family":"Ren","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3675-4985","authenticated-orcid":false,"given":"Peng","family":"Zhou","sequence":"additional","affiliation":[]},{"given":"Zhiguo","family":"Hu","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2020.3009209"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2930470"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2017.11.053"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2017.2699741"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1016\/j.isatra.2015.12.011"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2015.12.008"},{"key":"ref37","first-page":"1874","article-title":"Consensus guided unsupervised feature selection","volume":"2016","author":"liu","year":"0","journal-title":"Proc AAAI Conf Artif Intell"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2020.107375"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1145\/2783258.2783345"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2013.23"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2017.2763618"},{"key":"ref27","first-page":"470","article-title":"Embedded unsupervised feature selection","author":"wang","year":"2015","journal-title":"Proc AAAI Conf Artif Intell"},{"key":"ref29","first-page":"2422","article-title":"Coupled dictionary learning for unsupervised feature selection","author":"zhu","year":"2016","journal-title":"Proc AAAI Conf Artif Intell"},{"key":"ref2","first-page":"507","article-title":"Laplacian score for feature selection","volume":"18","author":"he","year":"2006","journal-title":"Proc Neural Inf Process Syst"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1145\/1835804.1835848"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611974010.8"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2019.105417"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2019.04.020"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2017.01.016"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2014.08.006"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2014.08.004"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2017.09.022"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1007\/978-981-15-3643-4_16"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2016.7727645"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1145\/1961189.1961199"},{"key":"ref55","first-page":"1026","article-title":"Unsupervised feature selection using nonnegative spectral analysis","author":"li","year":"2012","journal-title":"Proc AAAI"},{"key":"ref54","first-page":"1589","article-title":"$\\ell_{2}1$ -norm regularized discriminative feature selection for unsupervised learning","author":"yang","year":"2011","journal-title":"Proc Int Joint Conf Artif Intell"},{"key":"ref53","first-page":"1813","article-title":"Efficient and robust feature selection via joint $\\ell_{2},1$ -norms minimization","author":"nie","year":"2010","journal-title":"Proc Neural Inf Process Syst"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/ICDMW.2016.0111"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1007\/s10489-019-01420-9"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2019.06.044"},{"key":"ref40","first-page":"3045","article-title":"Convex batch mode active sampling via $\\alpha$ -relative pearson divergence","author":"wang","year":"2015","journal-title":"Proc 29th AAAI Conf Artif Intell"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TEVC.2020.2968743"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2019.08.040"},{"key":"ref14","first-page":"1026","article-title":"Unsupervised feature selection using nonnegative spectral analysis","author":"li","year":"2012","journal-title":"Proc AAAI Conf Artif Intell"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2015.02.043"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2017\/228"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2013.2272642"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2017.11.061"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-38562-9_25"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1145\/1273496.1273641"},{"key":"ref3","first-page":"1589","article-title":"$\\text{l}_{2,1}$ -norm regularized discriminative feature selection for unsupervised learning","volume":"22","author":"yang","year":"2011","journal-title":"Proc Int Joint Conf Artif Intell"},{"key":"ref6","first-page":"635","article-title":"Non-greedy active learning for text categorization using convex ansductive experimental design","author":"yu","year":"2008","journal-title":"Proc Int ACM SIGIR Conf Res Develop Inf Retr"},{"key":"ref5","doi-asserted-by":"crossref","DOI":"10.1093\/oso\/9780199296590.001.0001","volume":"34","author":"atkinson","year":"2007","journal-title":"Optimum Experimental Designs with SAS"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1016\/j.artint.2004.05.009"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2019.104915"},{"key":"ref7","first-page":"1572","article-title":"Early active learning via robust representation and structured sparsity","author":"nie","year":"2013","journal-title":"Proc Int Joint Conf Artif Intell"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2012.2183879"},{"key":"ref46","first-page":"1997","article-title":"Diversifying convex transductive experimental design for active learning","author":"shi","year":"2016","journal-title":"Proc IJCAI"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2011.06.037"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1162\/EVCO_a_00102"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2011.01.019"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-014-0781-x"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1145\/1143844.1143980"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2011.104"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1145\/3372121"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8948470\/09200324.pdf?arnumber=9200324","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,14]],"date-time":"2024-08-14T04:41:45Z","timestamp":1723610505000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9200324\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":56,"URL":"https:\/\/doi.org\/10.1109\/access.2020.3024690","relation":{},"ISSN":["2169-3536"],"issn-type":[{"type":"electronic","value":"2169-3536"}],"subject":[],"published":{"date-parts":[[2020]]}}}