{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T22:33:37Z","timestamp":1723242817737},"reference-count":40,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2017M620374"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["XDJK2018B013"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/access.2020.3022796","type":"journal-article","created":{"date-parts":[[2020,9,8]],"date-time":"2020-09-08T19:46:32Z","timestamp":1599594392000},"page":"165757-165768","source":"Crossref","is-referenced-by-count":11,"title":["ML2E: Meta-Learning Embedding Ensemble for Cold-Start Recommendation"],"prefix":"10.1109","volume":"8","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7024-4153","authenticated-orcid":false,"given":"Huiwei","family":"Wang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3359-033X","authenticated-orcid":false,"given":"Yong","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2017\/239"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2016.0151"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-7908-2604-3_16"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P16-1128"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D18-1176"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1145\/2939672.2939673"},{"key":"ref37","first-page":"265","article-title":"Tensorflow: A system for large-scale machine learning","author":"abadi","year":"2016","journal-title":"Proc USENIX Symp Oper Syst Design Implementation"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1145\/1060745.1060754"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1145\/2827872"},{"key":"ref34","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"2014","journal-title":"arXiv 1412 6980"},{"key":"ref10","article-title":"Federated meta-learning with fast convergence and efficient communication","author":"chen","year":"2018","journal-title":"arXiv 1802 07876"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2010.127"},{"key":"ref11","first-page":"1126","article-title":"Model-agnostic meta-learning for fast adaptation of deep networks","volume":"70","author":"finn","year":"2017","journal-title":"Proc 34th Int Conf Mach Learn"},{"key":"ref12","article-title":"Reptile: A scalable metalearning algorithm","author":"nichol","year":"2018","journal-title":"arXiv 1803 02999"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1145\/2501025.2501029"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1145\/1772690.1772758"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1145\/3308558.3313616"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1145\/1935826.1935910"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1145\/1390334.1390352"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1145\/1150402.1150490"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1145\/2009916.2009961"},{"key":"ref28","first-page":"308","article-title":"Layered concept-learning and dynamically variable bias management","author":"rendell","year":"1987","journal-title":"Proc IJCAI"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1145\/3331184.3331268"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4615-5529-2_1"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1145\/3292500.3330859"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1145\/2020408.2020480"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/MLSP.2016.7738886"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1145\/1557019.1557029"},{"key":"ref8","first-page":"4957","article-title":"Dropoutnet: Addressing cold start in recommender systems","author":"volkovs","year":"2017","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1145\/2783258.2783273"},{"key":"ref2","article-title":"Combating the cold start user problem in model based collaborative filtering","author":"biswas","year":"2017","journal-title":"arXiv 1703 00397"},{"key":"ref9","first-page":"6904","article-title":"A meta-learning perspective on cold-start recommendations for items","author":"vartak","year":"2017","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1145\/3109859.3109954"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1145\/2959100.2959172"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1145\/2600428.2609599"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1145\/1995966.1995976"},{"key":"ref24","article-title":"Deep meta learning for real-time target-aware visual tracking","author":"choi","year":"2017","journal-title":"arXiv 1712 09153"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1137\/1.9781611972801.18"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1023\/A:1019956318069"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1145\/2645710.2645751"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8948470\/09187870.pdf?arnumber=9187870","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,12,17]],"date-time":"2021-12-17T19:56:51Z","timestamp":1639771011000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9187870\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":40,"URL":"https:\/\/doi.org\/10.1109\/access.2020.3022796","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020]]}}}