{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T20:19:47Z","timestamp":1740169187023,"version":"3.37.3"},"reference-count":35,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"name":"Creative Research Groups Foundation of China","award":["51621004"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["51365020"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Hunan Provincial Civil-Military Integration Industry Development","award":["[2018]23"]},{"name":"Open Foundation of China Ship Scientific Research Center","award":["702SKL201705"]},{"DOI":"10.13039\/501100011219","name":"State Key Laboratory of Advanced Design Manufacturing for Vehicle Body","doi-asserted-by":"publisher","award":["71865009"],"id":[{"id":"10.13039\/501100011219","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/access.2020.3013875","type":"journal-article","created":{"date-parts":[[2020,8,3]],"date-time":"2020-08-03T21:21:38Z","timestamp":1596489698000},"page":"151452-151464","source":"Crossref","is-referenced-by-count":4,"title":["Tapered Roller Bearing Failure Diagnosis Based on Improved Probability Box Model"],"prefix":"10.1109","volume":"8","author":[{"given":"Hong","family":"Tang","sequence":"first","affiliation":[]},{"given":"Hongliang","family":"Dai","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8774-005X","authenticated-orcid":false,"given":"Yi","family":"Du","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2017.11.034"},{"key":"ref32","first-page":"26","author":"witten ian","year":"2005","journal-title":"Data Mining Practical Machine Learning Tools and Techniques"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1016\/j.measurement.2019.107406"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1016\/j.measurement.2019.106877"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2016.09.010"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2018.06.033"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.26599\/TST.2019.9010055"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2961953"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1007\/s13369-018-3652-x"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/j.ejor.2019.10.025"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1016\/j.jclepro.2019.119319"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1080\/0305215X.2019.1590563"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/TPWRS.2019.2924355"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2019.08.027"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1016\/j.energy.2019.116036"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1007\/s10107-004-0559-y"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.23919\/ChiCC.2017.8029115"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2017.02.042"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1016\/j.measurement.2019.107418"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.measurement.2019.107416"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.amc.2019.125011"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1016\/j.automatica.2019.108592"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.apm.2019.10.068"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1007\/s00500-015-1834-y"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.measurement.2018.09.058"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2018.01.005"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2019.2931134"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2010.07.013"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1007\/s00158-019-02307-6"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/LCSYS.2019.2925511"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.ejor.2019.10.041"},{"key":"ref24","first-page":"336","article-title":"Compound fault diagnosis based on probability box theory","author":"tang","year":"2017","journal-title":"Proc ICMI"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.2172\/809606"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1016\/j.cor.2019.07.015"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1016\/j.cma.2019.07.021"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8948470\/09154700.pdf?arnumber=9154700","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,12,17]],"date-time":"2021-12-17T19:54:54Z","timestamp":1639770894000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9154700\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":35,"URL":"https:\/\/doi.org\/10.1109\/access.2020.3013875","relation":{},"ISSN":["2169-3536"],"issn-type":[{"type":"electronic","value":"2169-3536"}],"subject":[],"published":{"date-parts":[[2020]]}}}