{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,22]],"date-time":"2024-07-22T23:35:59Z","timestamp":1721691359523},"reference-count":38,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["51675525","11725211"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/access.2020.3013394","type":"journal-article","created":{"date-parts":[[2020,7,31]],"date-time":"2020-07-31T20:23:49Z","timestamp":1596227029000},"page":"140038-140053","source":"Crossref","is-referenced-by-count":6,"title":["A Deep Learning-Based Method for Heat Source Layout Inverse Design"],"prefix":"10.1109","volume":"8","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4482-1279","authenticated-orcid":false,"given":"Jialiang","family":"Sun","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9424-7028","authenticated-orcid":false,"given":"Jun","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1035-3200","authenticated-orcid":false,"given":"Xiaoya","family":"Zhang","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9833-679X","authenticated-orcid":false,"given":"Weien","family":"Zhou","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1145\/1835449.1835599"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1016\/j.cma.2019.112603"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1016\/j.cma.2018.12.030"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1016\/j.cma.2019.112623"},{"key":"ref30","first-page":"3424","article-title":"Accelerating eulerian fluid simulation with convolutional networks","author":"tompson","year":"2017","journal-title":"Proc 5th Int Conf Learn Represent ICLR"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1016\/j.cpc.2012.09.031"},{"key":"ref35","article-title":"Show, attend and read: A simple and strong baseline for irregular text recognition","author":"li","year":"2018","journal-title":"arXiv 1811 00751"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1186\/2193-9772-3-8"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1002\/lapl.200410129"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1126\/science.1064419"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2006.891332"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1039\/b305686d"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1063\/1.3272274"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1023\/A:1011430410075"},{"key":"ref16","first-page":"1097","article-title":"ImageNet classification with deep convolutional neural networks","volume":"25","author":"krizhevsky","year":"2012","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref17","first-page":"2493","article-title":"Natural language processing (almost) from scratch","volume":"12","author":"collobert","year":"2011","journal-title":"J Mach Learn Res"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-013-0620-5"},{"key":"ref19","article-title":"Physics informed deep learning (Part I): Data-driven solutions of nonlinear partial differential equations","author":"raissi","year":"2017","journal-title":"arXiv 1711 10561"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1126\/sciadv.aar4206"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijheatmasstransfer.2018.02.001"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1080\/0951192X.2018.1429668"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijheatmasstransfer.2016.12.007"},{"key":"ref6","first-page":"4","article-title":"Inverse and algebraic quantum scattering theory","volume":"488","author":"barnabas","year":"1997","journal-title":"Lect Notes Phys"},{"key":"ref29","article-title":"Nanophotonic inverse design using articial neural network","author":"peurifoy","year":"2017","journal-title":"Proc Frontiers Opt"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijheatmasstransfer.2016.05.011"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1002\/aic.14491"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1002\/andp.201400190"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1007\/s00158-018-2042-z"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1007\/s00158-013-0978-6"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.2514\/1.47507"},{"key":"ref20","article-title":"Physics informed deep learning (Part II): Data-driven discovery of nonlinear partial differential equations","author":"raissi","year":"2017","journal-title":"arXiv 1711 10566"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1515\/rnam-2019-0018"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.5120\/20562-2951"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1115\/DETC2018-85339"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1007\/s00158-018-2101-5"},{"key":"ref26","article-title":"The heat source layout optimization using deep learning surrogate modeling","author":"chen","year":"0","journal-title":"Struct Multidisciplinary Optim"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1007\/s00158-019-02222-w"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8948470\/09153557.pdf?arnumber=9153557","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,12]],"date-time":"2022-01-12T15:56:41Z","timestamp":1642003001000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9153557\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":38,"URL":"https:\/\/doi.org\/10.1109\/access.2020.3013394","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020]]}}}