{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,24]],"date-time":"2025-03-24T08:25:57Z","timestamp":1742804757073,"version":"3.37.3"},"reference-count":45,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["51505099"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100002858","name":"China Postdoctoral Science Foundation","doi-asserted-by":"publisher","award":["2016T90305"],"id":[{"id":"10.13039\/501100002858","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/access.2020.3009644","type":"journal-article","created":{"date-parts":[[2020,7,16]],"date-time":"2020-07-16T20:04:45Z","timestamp":1594929885000},"page":"131248-131256","source":"Crossref","is-referenced-by-count":25,"title":["A Deep Learning Based Fault Diagnosis Method With Hyperparameter Optimization by Using Parallel Computing"],"prefix":"10.1109","volume":"8","author":[{"given":"Chaozhong","family":"Guo","sequence":"first","affiliation":[]},{"given":"Lin","family":"Li","sequence":"additional","affiliation":[]},{"given":"Yuanyuan","family":"Hu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0764-5365","authenticated-orcid":false,"given":"Jihong","family":"Yan","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/PHM-Chongqing.2018.00171"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/ICIS.2016.7550914"},{"key":"ref33","doi-asserted-by":"crossref","first-page":"1000","DOI":"10.1016\/j.asoc.2010.01.021","article-title":"Genetic algorithm with peaks adaptive objective function used to fit the EPR powder spectrum","volume":"11","author":"?urek","year":"2011","journal-title":"Appl Soft Comput"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1007\/3-540-45825-5_35"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1006\/jpdc.2002.1854"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2020.106068"},{"key":"ref37","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","article-title":"Reducing the dimensionality of data with neural networks","volume":"313","author":"hinton","year":"2006","journal-title":"Science"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/TPDS.2016.2626289"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/IPDPSW.2017.178"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2018.10.025"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2015.10.025"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2018.12.009"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2019.105510"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1016\/j.apenergy.2011.06.029"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1145\/1105755.1105759"},{"key":"ref14","first-page":"211","article-title":"On construction of a visualization toolkit for MPI parallel programs in cluster environments","volume":"1","author":"li","year":"2005","journal-title":"Proc 19th Int Conf Adv Inf Netw Appl (AINA) (AINA Papers)"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2018.04.025"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.compeleceng.2017.11.029"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/TMECH.2019.2928967"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1016\/j.procs.2020.03.359"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.measurement.2015.03.017"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2925828"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1007\/s10033-017-0180-7"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/ICACI.2018.8377544"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2005.09.012"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2019.2959784"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/CCDC.2019.8833353"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/TIE.2018.2868316"},{"key":"ref8","first-page":"1","article-title":"Efficient estimation of word representations in vector space","author":"mikolov","year":"2013","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref7","first-page":"1097","article-title":"ImageNet classification with deep convolutional neural networks","volume":"1","author":"krizhevsky","year":"2012","journal-title":"Proc 25th Int Conf Neural Inf Process Syst"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2009.01.065"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2013.12.026"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/TIE.2016.2519325"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1016\/j.measurement.2019.107132"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1016\/j.renene.2019.12.047"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1016\/j.aei.2019.100977"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.isatra.2017.03.017"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1016\/j.nucengdes.2020.110541"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/ICASI.2016.7539822"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2020.01.106"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2020.105484"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1016\/j.geoderma.2019.113908"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2017.09.040"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1016\/j.fluid.2012.08.019"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1016\/j.enconman.2019.111799"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8948470\/09142182.pdf?arnumber=9142182","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,12]],"date-time":"2022-01-12T15:57:23Z","timestamp":1642003043000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9142182\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":45,"URL":"https:\/\/doi.org\/10.1109\/access.2020.3009644","relation":{},"ISSN":["2169-3536"],"issn-type":[{"type":"electronic","value":"2169-3536"}],"subject":[],"published":{"date-parts":[[2020]]}}}