{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,29]],"date-time":"2024-06-29T00:23:04Z","timestamp":1719620584081},"reference-count":37,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61703161"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["222201714031"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100007219","name":"National Natural Science Foundation of Shanghai","doi-asserted-by":"publisher","award":["19ZR1473200"],"id":[{"id":"10.13039\/100007219","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/access.2020.3009562","type":"journal-article","created":{"date-parts":[[2020,7,15]],"date-time":"2020-07-15T20:57:31Z","timestamp":1594846651000},"page":"129387-129396","source":"Crossref","is-referenced-by-count":1,"title":["Multiple Elastic Networks With Time Delays for Early Fault Detection and Prognostics"],"prefix":"10.1109","volume":"8","author":[{"given":"Dongliang","family":"Guo","sequence":"first","affiliation":[]},{"given":"Wen","family":"Yang","sequence":"additional","affiliation":[]},{"given":"Fengbo","family":"Tao","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1379-245X","authenticated-orcid":false,"given":"Bing","family":"Song","sequence":"additional","affiliation":[]},{"given":"Hui","family":"Liu","sequence":"additional","affiliation":[]},{"given":"Lei","family":"Sun","sequence":"additional","affiliation":[]},{"given":"Jiale","family":"Wang","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2018.2809730"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2013.03.047"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1007\/s00521-012-0980-8"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1007\/s11063-016-9537-7"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2019.2959784"},{"key":"ref36","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"lecun","year":"2015","journal-title":"Nature"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.2980244"},{"key":"ref34","first-page":"564","article-title":"Time series analysis using deep feed forward neural networks","volume":"105","author":"turner","year":"2014","journal-title":"Grad Theses Diss"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.jfineco.2008.07.002"},{"key":"ref11","first-page":"48","article-title":"A new approach for online identification of low frequency oscillation modes based on auto-regressive moving-average model","volume":"34","author":"chen","year":"2010","journal-title":"Power Syst Technol"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2008.04.017"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1007\/s00477-016-1273-z"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1080\/13504850110086062"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/TIE.2018.2868316"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/TIE.2018.2853603"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1016\/j.chemolab.2012.07.010"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1080\/00949650213743"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/TIE.2014.2345331"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1016\/j.apenergy.2018.05.043"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2798278"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2008.07.024"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.2989410"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2892496"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1016\/j.cie.2008.11.027"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/TCST.2016.2550426"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/TIE.2019.2931491"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1002\/cem.3134"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/TIE.2018.2801804"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1111\/rssa.12068"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.cherd.2009.09.002"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1016\/S1004-9541(14)60088-4"},{"key":"ref22","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1007\/s10618-010-0178-6","article-title":"Learning Bayesian networks by hill climbing: Efficient methods based on progressive restriction of the neighborhood","volume":"22","author":"jos\u00e9","year":"2011","journal-title":"Data Mining Knowl Discovery"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/72.935093"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1016\/j.ymssp.2016.04.019"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1007\/s10462-016-9465-y"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2018.2858281"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1109\/TPEL.2016.2608842"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8948470\/09141283.pdf?arnumber=9141283","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,12]],"date-time":"2022-01-12T01:09:32Z","timestamp":1641949772000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9141283\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":37,"URL":"https:\/\/doi.org\/10.1109\/access.2020.3009562","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020]]}}}