{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,29]],"date-time":"2024-07-29T15:55:00Z","timestamp":1722268500850},"reference-count":74,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Basic Research Program of China","doi-asserted-by":"publisher","award":["2016YFA0202003","2017YFC0112900"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["81874216","61971463"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Guangzhou Science and Technology Plan Project","award":["202002030385"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/access.2020.3002534","type":"journal-article","created":{"date-parts":[[2020,6,15]],"date-time":"2020-06-15T22:23:11Z","timestamp":1592259791000},"page":"112078-112091","source":"Crossref","is-referenced-by-count":25,"title":["Image Restoration for Low-Dose CT via Transfer Learning and Residual Network"],"prefix":"10.1109","volume":"8","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5990-2269","authenticated-orcid":false,"given":"Anni","family":"Zhong","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2413-5175","authenticated-orcid":false,"given":"Bin","family":"Li","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6616-2219","authenticated-orcid":false,"given":"Ning","family":"Luo","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2308-3748","authenticated-orcid":false,"given":"Yuan","family":"Xu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8372-5554","authenticated-orcid":false,"given":"Linghong","family":"Zhou","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5037-2801","authenticated-orcid":false,"given":"Xin","family":"Zhen","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref73","doi-asserted-by":"publisher","DOI":"10.1137\/17M1123237"},{"key":"ref72","doi-asserted-by":"publisher","DOI":"10.1109\/ISBI.2017.7950523"},{"key":"ref71","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-13972-2_8"},{"key":"ref70","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2011.2109730"},{"key":"ref74","doi-asserted-by":"publisher","DOI":"10.1117\/12.844640"},{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/ISBI.2015.7163869"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1145\/3035012.3035022"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1002\/mp.12344"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2019.2917258"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref30","article-title":"Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis","author":"han","year":"2016","journal-title":"arXiv 1611 06391"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1088\/1361-6560\/aa8d09"},{"key":"ref36","article-title":"A cascaded convolutional neural network for X-ray low-dose CT image denoising","author":"wu","year":"2017","journal-title":"arXiv 1705 04267"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1117\/12.643267"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2017.2715284"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1137\/1.9780898719277"},{"key":"ref62","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2007.901238"},{"key":"ref61","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-35289-8_26"},{"key":"ref63","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2006.881969"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2858196"},{"key":"ref64","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.366"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1007\/s10278-018-0056-0"},{"key":"ref65","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2018.2839891"},{"key":"ref66","article-title":"Wavelet domain residual network (WavResNet) for low-dose X-ray CT reconstruction","author":"kang","year":"2017","journal-title":"arXiv 1703 01383"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2018.2827462"},{"key":"ref67","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2017.2777440"},{"key":"ref68","doi-asserted-by":"publisher","DOI":"10.1016\/j.bspc.2018.01.010"},{"key":"ref69","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2003.819861"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0042729"},{"key":"ref1","first-page":"110","article-title":"A review on extrinsic registration methods for medical images","volume":"21","author":"alam","year":"2016","journal-title":"Tech J Univ Eng Technol Taxila"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1118\/1.4851635"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/TSP.2006.881199"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46726-9_49"},{"key":"ref24","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"lecun","year":"2015","journal-title":"Nature"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1088\/0031-9155\/58\/16\/5803"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1038\/s42256-019-0057-9"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1364\/BOE.8.000679"},{"key":"ref50","article-title":"Gradients explode-deep networks are shallow-resnet explained","author":"philipp","year":"2018","journal-title":"Proc 6th Int Conf Represent ICLR Workshop Track"},{"key":"ref51","article-title":"Transfer learning for music classification and regression tasks","author":"choi","year":"2017","journal-title":"arXiv 1703 09179"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1364\/OE.24.025129"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1109\/TNS.2015.2467219"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2017.11.028"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1109\/3DV.2016.79"},{"key":"ref55","first-page":"234","article-title":"U-Net: Convolutional networks for biomedical image segmentation","volume":"2015","author":"ronneberger","year":"0","journal-title":"Proc Int Conf Med Image Comput Comput -Assist Intervent"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2016.2596743"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.1109\/JSTARS.2017.2655112"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1016\/B978-0-12-810408-8.00018-3"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1364\/BOE.7.001015"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1118\/1.3547724"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/ISBI.2015.7163871"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1016\/j.compmedimag.2008.12.007"},{"key":"ref13","doi-asserted-by":"crossref","first-page":"1682","DOI":"10.1109\/TMI.2012.2195669","article-title":"Low-dose X-ray CT reconstruction via dictionary learning","volume":"31","author":"xu","year":"2012","journal-title":"IEEE Trans Med Imag"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1088\/0266-5611\/27\/11\/115012"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2014.2319055"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1088\/0031-9155\/55\/18\/009"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1117\/12.2006907"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1118\/1.4894714"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1088\/0031-9155\/57\/9\/2667"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1118\/1.3232004"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1148\/radiol.2303021726"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2006.882141"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2012.2187213"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1088\/0031-9155\/53\/17\/021"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1118\/1.4745564"},{"key":"ref49","first-page":"342","article-title":"The shattered gradients problem: If resnets are the answer, then what is the question?","volume":"70","author":"balduzzi","year":"2017","journal-title":"Proc 34th Int Conf Mach Learn"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1364\/JOSAA.31.000981"},{"key":"ref46","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"2014","journal-title":"arXiv 1412 6980"},{"key":"ref45","article-title":"Parameter constrained transfer learning for low dose PET image denoising","author":"gong","year":"2019","journal-title":"arXiv 1910 06749"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2017.2662206"},{"key":"ref47","article-title":"Batch normalization: Accelerating deep network training by reducing internal covariate shift","author":"ioffe","year":"2015","journal-title":"arXiv 1502 03167"},{"key":"ref42","doi-asserted-by":"crossref","first-page":"1285","DOI":"10.1109\/TMI.2016.2528162","article-title":"Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning","volume":"35","author":"hoochang","year":"2016","journal-title":"IEEE Trans Med Imag"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2015.08.001"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1117\/12.2534848"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2018.2832217"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8948470\/09117103.pdf?arnumber=9117103","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,12]],"date-time":"2022-01-12T01:08:27Z","timestamp":1641949707000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9117103\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":74,"URL":"https:\/\/doi.org\/10.1109\/access.2020.3002534","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020]]}}}