{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,18]],"date-time":"2025-04-18T08:26:06Z","timestamp":1744964766675,"version":"3.37.3"},"reference-count":137,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"crossref","award":["2018YFB0204300"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/access.2020.2988903","type":"journal-article","created":{"date-parts":[[2020,4,20]],"date-time":"2020-04-20T19:46:51Z","timestamp":1587412011000},"page":"94341-94356","source":"Crossref","is-referenced-by-count":44,"title":["Recent Trends in Deep Learning Based Open-Domain Textual Question Answering Systems"],"prefix":"10.1109","volume":"8","author":[{"given":"Zhen","family":"Huang","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-4158-1051","authenticated-orcid":false,"given":"Shiyi","family":"Xu","sequence":"additional","affiliation":[]},{"given":"Minghao","family":"Hu","sequence":"additional","affiliation":[]},{"given":"Xinyi","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Jinyan","family":"Qiu","sequence":"additional","affiliation":[]},{"given":"Yongquan","family":"Fu","sequence":"additional","affiliation":[]},{"given":"Yuncai","family":"Zhao","sequence":"additional","affiliation":[]},{"given":"Yuxing","family":"Peng","sequence":"additional","affiliation":[]},{"given":"Changjian","family":"Wang","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","first-page":"2042","article-title":"Convolutional neural network architectures for matching natural language sentences","author":"hu","year":"2014","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P19-1221"},{"key":"ref33","first-page":"1","article-title":"MS MARCO: A human generated machine reading comprehension dataset","author":"nguyen","year":"2016","journal-title":"Proc Workshop Cognit Comput Integrating Neural Symbolic Approaches Co-Located 30th Annu Conf Neural Inf Process Syst (NIPS)"},{"key":"ref32","first-page":"1","article-title":"The goldilocks principle: Reading children’s books with explicit memory representations","author":"hill","year":"2016","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref31","first-page":"1693","article-title":"Teaching machines to read and comprehend","author":"hermann","year":"2015","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref30","article-title":"Quasar: Datasets for question answering by search and reading","author":"dhingra","year":"2017","journal-title":"arXiv 1707 03904"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P17-1171"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/589"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-24471-6_3"},{"key":"ref34","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1162\/tacl_a_00023","article-title":"The NarrativeQA reading comprehension challenge","volume":"6","author":"koci\u0161k\u00fd","year":"2018","journal-title":"Trans Assoc Comput Linguistics"},{"key":"ref28","first-page":"1","article-title":"Compositional semantic parsing on semi-structured tables","author":"pasupat","year":"2014","journal-title":"Proc Int Conf World Wide Web"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1145\/1458082.1458143"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1162\/tacl_a_00021"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.3390\/app9183698"},{"key":"ref22","article-title":"A survey on neural machine reading comprehension","author":"qiu","year":"2019","journal-title":"arXiv 1906 03824"},{"key":"ref21","article-title":"Machine reading comprehension: A literature review","author":"zhang","year":"2019","journal-title":"arXiv 1907 01686"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1145\/2629489"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/MCI.2018.2840738"},{"key":"ref101","first-page":"1","article-title":"Coarse-grain fine-grain coattention network for multi-evidence question answering","author":"zhong","year":"2019","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1145\/2623330.2623749"},{"key":"ref100","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.33016529"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1145\/1242572.1242667"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1145\/3285029"},{"key":"ref51","first-page":"5070","article-title":"Meta multi-task learning for sequence modeling","author":"chen","year":"2018","journal-title":"Proc 32nd AAAI Conf Artif Intell"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1145\/3077136.3084147"},{"key":"ref58","doi-asserted-by":"publisher","DOI":"10.1147\/JRD.2012.2186682"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1007\/s10791-017-9321-y"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1561\/1500000061"},{"key":"ref55","first-page":"1","article-title":"Neural speed reading via skim-RNN","author":"seo","year":"2018","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P17-1172"},{"key":"ref53","first-page":"1","article-title":"Evidence aggregation for answer re-ranking in open-domain question answering","author":"wang","year":"2018","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.97"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1145\/3159652.3162009"},{"key":"ref4","doi-asserted-by":"crossref","first-page":"433","DOI":"10.1093\/mind\/LIX.236.433","article-title":"Computing machinery and intelligence-AM Turing","volume":"59","author":"turing","year":"1950","journal-title":"Mind"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.3115\/1118693.1118726"},{"journal-title":"Speech and Language Processing","year":"2009","author":"jurafsky","key":"ref6"},{"article-title":"Feature-driven question answering with natural language alignment","year":"2014","author":"yao","key":"ref5"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1145\/1376616.1376746"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P18-1078"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-30222-3_46"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-76298-0_52"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D16-1053"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D18-1051"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P18-1161"},{"key":"ref47","first-page":"5981","article-title":"R 3: Reinforced ranker-reader for open-domain question answering","author":"wang","year":"2018","journal-title":"Proc 32nd AAAI Conf Artif Intell"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P17-1021"},{"key":"ref41","first-page":"188","article-title":"Research and application of information retrieval techniques in intelligent question answering system","author":"yunjuan","year":"2011","journal-title":"Proc 3rd Int Conf Comput Res Develop"},{"key":"ref44","first-page":"77","article-title":"The TREC-8 question answering track report","author":"voorhees","year":"1999","journal-title":"Proc Text Retrieval Conf (TREC)"},{"key":"ref43","first-page":"215","article-title":"Viewing the Web as a virtual database for question answering","author":"katz","year":"2004","journal-title":"New Directions in Question Answering"},{"key":"ref127","doi-asserted-by":"publisher","DOI":"10.1162\/tacl_a_00276"},{"key":"ref126","article-title":"Deep learning: A critical appraisal","author":"marcus","year":"2018","journal-title":"arXiv 1801 00631"},{"key":"ref125","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P19-1218"},{"key":"ref124","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D18-1237"},{"key":"ref73","first-page":"812","article-title":"Improved asymmetric locality sensitive hashing (ALSH) for maximum inner product search (MIPS)","author":"shrivastava","year":"2015","journal-title":"Proc Conf Uncertainty of Artificial Intelligence"},{"key":"ref72","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P16-1044"},{"key":"ref129","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P19-1355"},{"key":"ref71","first-page":"1","article-title":"Machine comprehension using match-LSTM and answer pointer","author":"wang","year":"2017","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref128","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P19-1436"},{"key":"ref70","doi-asserted-by":"publisher","DOI":"10.1145\/1341531.1341544"},{"key":"ref76","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D17-1070"},{"key":"ref130","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D19-1221"},{"key":"ref77","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/D14-1162"},{"key":"ref74","article-title":"Billion-scale similarity search with GPUs","author":"johnson","year":"2017","journal-title":"arXiv 1702 08734"},{"key":"ref75","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/N18-4017"},{"key":"ref133","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P19-1259"},{"key":"ref134","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P19-1260"},{"key":"ref131","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D18-1259"},{"key":"ref78","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/P14-5010"},{"key":"ref79","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/W18-2501"},{"key":"ref132","first-page":"1","article-title":"DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs","author":"dua","year":"2019","journal-title":"Proc Conf North Amer Chapter Assoc Comput Linguistics (NAACL)"},{"key":"ref136","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/W18-2603"},{"key":"ref135","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D19-1170"},{"key":"ref137","article-title":"Advances in pre-training distributed word representations","author":"mikolov","year":"2018","journal-title":"Proc Int Conf Lang Res Eval (LREC)"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D18-1052"},{"key":"ref62","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P19-1612"},{"key":"ref61","first-page":"4171","article-title":"BERT: Pre-training of deep bidirectional transformers for language understanding","author":"devlin","year":"2019","journal-title":"Proc HLT-NAACL ACL"},{"key":"ref63","first-page":"1","article-title":"Question answering in webclopedia","author":"hovy","year":"2000","journal-title":"Proc 9th Text Retrieval Conf (TREC)"},{"key":"ref64","doi-asserted-by":"publisher","DOI":"10.1561\/1500000016"},{"key":"ref65","first-page":"897","article-title":"McRank: Learning to rank using multiple classification and gradient boosting","author":"li","year":"2007","journal-title":"Proc 20th Int Conf Neural Inf Process Syst"},{"key":"ref66","first-page":"641","article-title":"Pranking with ranking","author":"crammer","year":"2001","journal-title":"Advances in neural information processing systems"},{"key":"ref67","doi-asserted-by":"publisher","DOI":"10.1145\/1102351.1102363"},{"key":"ref68","doi-asserted-by":"publisher","DOI":"10.1145\/1277741.1277808"},{"key":"ref69","first-page":"193","article-title":"Learning to rank with nonsmooth cost functions","author":"burges","year":"2006","journal-title":"Proc 19th Int Conf Neural Inf Process Syst"},{"key":"ref2","first-page":"8","article-title":"YodaQA: A modular question answering system pipeline","author":"baudi\u0161","year":"2015","journal-title":"Proc Int Student Conf Electr Eng POSTER"},{"key":"ref1","first-page":"1","article-title":"Using Wikipedia at the TREC QA Track","author":"ahn","year":"2004","journal-title":"Proc Text Retrieval Conf (TREC)"},{"key":"ref95","article-title":"Multi-perspective context matching for machine comprehension","author":"wang","year":"2016","journal-title":"arXiv 1612 04211"},{"key":"ref109","article-title":"Dynamic integration of background knowledge in neural NLU systems","author":"weissenborn","year":"2017","journal-title":"arXiv 1706 02596"},{"key":"ref94","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/570"},{"key":"ref108","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D18-1455"},{"key":"ref93","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P18-1158"},{"key":"ref107","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D18-1454"},{"key":"ref92","first-page":"1","article-title":"Fusionnet: Fusing via fully-aware attention with application to machine comprehension","author":"huang","year":"2018","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref106","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P18-1076"},{"key":"ref91","first-page":"1","article-title":"QANet: Combining local convolution with global self-attention for reading comprehension","author":"yu","year":"2018","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref105","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P18-1224"},{"key":"ref90","first-page":"1","article-title":"DCN: Mixed objective and deep residual coattention for question answering","author":"xiong","year":"2018","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref104","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P18-1178"},{"key":"ref103","doi-asserted-by":"publisher","DOI":"10.1609\/aaai.v33i01.33016875"},{"key":"ref102","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P18-1159"},{"key":"ref111","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D18-1477"},{"key":"ref112","first-page":"2962","article-title":"Efficient and robust automated machine learning","author":"feurer","year":"2015","journal-title":"Proc Adv Neural Inf Process Syst Annu Conf Neural Inf Process Syst"},{"article-title":"Neural reading comprehension and beyond","year":"2018","author":"chen","key":"ref110"},{"key":"ref98","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2018.8489553"},{"key":"ref99","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P18-1157"},{"key":"ref96","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/K17-1028"},{"key":"ref97","doi-asserted-by":"publisher","DOI":"10.1145\/3097983.3098177"},{"key":"ref10","first-page":"1533","article-title":"Semantic parsing on freebase from question-answer pairs","author":"berant","year":"2013","journal-title":"Proc Conf Empirical Methods Natural Lang Process (EMNLP)"},{"key":"ref11","article-title":"Large-scale simple question answering with memory networks","author":"bordes","year":"2015","journal-title":"arXiv 1506 02075"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1609\/aimag.v31i3.2303"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D16-1264"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P17-1147"},{"key":"ref15","article-title":"SearchQA: A new Q&A dataset augmented with context from a search engine","author":"dunn","year":"2017","journal-title":"arXiv 1704 05179"},{"key":"ref118","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D18-1474"},{"article-title":"Improving language understanding with unsupervised learning","year":"2018","author":"radford","key":"ref82"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.5120\/8406-2030"},{"key":"ref117","first-page":"1","article-title":"Fast and accurate text classification: Skimming, rereading and early stopping","author":"keyi yu","year":"2018","journal-title":"ICLR Workshop"},{"key":"ref81","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/N18-1202"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2011.07.047"},{"key":"ref84","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P19-1617"},{"journal-title":"Deep Learning in Question Answering","year":"2018","author":"kang","key":"ref18"},{"key":"ref119","first-page":"1","article-title":"Skip RNN: Learning to skip state updates in recurrent neural networks","author":"campos","year":"2018","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref83","first-page":"5998","article-title":"Attention is all you need","volume":"30","author":"vaswani","year":"2017","journal-title":"Proc Adv Neural Inf Process Syst (NIPS)"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1007\/s10115-018-1203-0"},{"key":"ref114","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P19-1428"},{"journal-title":"Efficient and robust automated machine learning","year":"2018","author":"hutter","key":"ref113"},{"key":"ref116","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P18-1160"},{"key":"ref80","doi-asserted-by":"publisher","DOI":"10.3115\/1219044.1219075"},{"key":"ref115","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D18-1232"},{"key":"ref120","first-page":"1","article-title":"Neural speed reading with structural-JUMP-LSTM","author":"hansen","year":"2019","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref89","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P17-1018"},{"key":"ref121","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/W17-2631"},{"key":"ref122","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/P17-1020"},{"key":"ref123","first-page":"1","article-title":"Multi-step retriever-reader interaction for scalable open-domain question answering","author":"das","year":"2019","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref85","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/N16-1170"},{"key":"ref86","first-page":"1","article-title":"Dynamic coattention networks for question answering","author":"xiong","year":"2017","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref87","first-page":"1","article-title":"Bidirectional attention flow for machine comprehension","author":"seo","year":"2017","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref88","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/W18-2601"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8948470\/09072442.pdf?arnumber=9072442","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,12,17]],"date-time":"2021-12-17T19:51:31Z","timestamp":1639770691000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/9072442\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":137,"URL":"https:\/\/doi.org\/10.1109\/access.2020.2988903","relation":{},"ISSN":["2169-3536"],"issn-type":[{"type":"electronic","value":"2169-3536"}],"subject":[],"published":{"date-parts":[[2020]]}}}