{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T20:19:16Z","timestamp":1740169156210,"version":"3.37.3"},"reference-count":37,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61806219","61876189","61503407","61703426","61273275"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Young Talent Fund of University Association for Science and Technology in Shaanxi, China","award":["20190108"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/access.2020.2972132","type":"journal-article","created":{"date-parts":[[2020,2,6]],"date-time":"2020-02-06T21:34:57Z","timestamp":1581024897000},"page":"28614-28623","source":"Crossref","is-referenced-by-count":3,"title":["Discriminative Auto-Encoder With Local and Global Graph Embedding"],"prefix":"10.1109","volume":"8","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-1770-906X","authenticated-orcid":false,"given":"Rui","family":"Li","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2785-9539","authenticated-orcid":false,"given":"Xiaodan","family":"Wang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1028-8162","authenticated-orcid":false,"given":"Jie","family":"Lai","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-0962-0671","authenticated-orcid":false,"given":"Yafei","family":"Song","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8415-8611","authenticated-orcid":false,"given":"Lei","family":"Lei","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2884027"},{"journal-title":"UCI repository of machine learning databases","year":"1998","author":"blake","key":"ref32"},{"key":"ref31","first-page":"2579","article-title":"Visualizing data using t-SNE","volume":"9","author":"van der maaten","year":"2008","journal-title":"J Mach Learn Res"},{"key":"ref30","article-title":"An overview of gradient descent optimization algorithms","author":"ruder","year":"2017","journal-title":"arXiv 1609 04747"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2015.2412676"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2019.05.009"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2017.2726188"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2019.113079"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/MCI.2018.2840738"},{"key":"ref11","first-page":"933","article-title":"Language modeling with gated convolutional networks","author":"dauphin","year":"2017","journal-title":"Proc 34th Int Conf Mach Learn"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2936124"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2017.02.013"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2015.08.104"},{"key":"ref15","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1126\/science.1127647","article-title":"Reducing the dimensionality of data with neural networks","volume":"313","author":"hinton","year":"2006","journal-title":"Science"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2015.02.023"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2016.2605010"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2019.2893180"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.sigpro.2017.05.030"},{"key":"ref28","first-page":"153","article-title":"Locality preserving projections","author":"he","year":"2005","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref4","first-page":"833","article-title":"Contractive auto-encoders: Explicit invariance during feature extraction","author":"rifai","year":"2011","journal-title":"Proc 28th Int Conf Mach Learn"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1126\/science.290.5500.2323"},{"key":"ref3","first-page":"3371","article-title":"Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion","volume":"74","author":"vincent","year":"2010","journal-title":"J Mach Learn Res"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.308"},{"key":"ref29","first-page":"585","article-title":"Laplacian eigenmaps and spectral techniquesfor embedding and clustering","author":"belkin","year":"2002","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-23783-6_41"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2016.2577031"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref2","first-page":"265","article-title":"On optimization methods for deep learning","author":"le","year":"2011","journal-title":"Proc 28th Int Conf Mach Learn"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2015.2389824"},{"key":"ref1","first-page":"153","article-title":"Greedy layer-wise training of deep networks","author":"bengio","year":"2006","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref20","article-title":"Supervised COSMOS autoencoder: Learning beyond the Euclidean loss!","author":"singh","year":"2018","journal-title":"arXiv 1810 06221"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/IJCNN.2017.7965965"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1016\/j.imavis.2017.01.005"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2017.05.042"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-16808-1_6"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2011.11.003"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2018.03.022"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8948470\/08985268.pdf?arnumber=8985268","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,12,17]],"date-time":"2021-12-17T19:51:27Z","timestamp":1639770687000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8985268\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":37,"URL":"https:\/\/doi.org\/10.1109\/access.2020.2972132","relation":{},"ISSN":["2169-3536"],"issn-type":[{"type":"electronic","value":"2169-3536"}],"subject":[],"published":{"date-parts":[[2020]]}}}