{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T23:32:50Z","timestamp":1723246370563},"reference-count":33,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"name":"Key Science and Technology project of ZheJiang Province","award":["2019C03127"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/access.2020.2971579","type":"journal-article","created":{"date-parts":[[2020,2,4]],"date-time":"2020-02-04T21:18:08Z","timestamp":1580851088000},"page":"37406-37415","source":"Crossref","is-referenced-by-count":3,"title":["AEDmts: An Attention-Based Encoder-Decoder Framework for Multi-Sensory Time Series Analytic"],"prefix":"10.1109","volume":"8","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6681-9209","authenticated-orcid":false,"given":"Jin","family":"Fan","sequence":"first","affiliation":[]},{"given":"Hongkun","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Yipan","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Ke","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Bei","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1080\/01431160412331269698"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/ISWC.2005.52"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/TBME.2008.2006190"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1007\/BF00058655"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2010.04.019"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-24646-6_1"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/TITB.2010.2051955"},{"key":"ref13","first-page":"1541","article-title":"Activity recognition from accelerometer data","volume":"5","author":"ravi","year":"2005","journal-title":"Proc AAAI"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/CCNC.2013.6488584"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1145\/3266157.3266221"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.2307\/2284333"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/TCST.2007.899728"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/72.935093"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1007\/BF00114844"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1016\/j.pmcj.2011.06.004"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2017.2788430"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1145\/1964897.1964918"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/JSEN.2016.2628346"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2016.09.020"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/TITB.2007.899496"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/TBME.2015.2471094"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2017\/366"},{"key":"ref7","article-title":"Collaborative dynamic sparse topic regression with user profile evolution for item recommendation","author":"gao","year":"2017","journal-title":"Proc 31st AAAI Conf Artif Intell"},{"key":"ref2","first-page":"454","article-title":"Stock price prediction using attention-based multi-input LSTM","author":"li","year":"2018","journal-title":"Proc Asian Conf Mach Learn"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.amc.2008.05.099"},{"key":"ref1","article-title":"A hybrid method for traffic flow forecasting using multimodal deep learning","author":"du","year":"2018","journal-title":"arXiv 1803 02099"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1162\/neco.1997.9.8.1735"},{"key":"ref22","first-page":"802","article-title":"Convolutional LSTM network: A machine learning approach for precipitation nowcasting","author":"xingjian","year":"2015","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref21","article-title":"Empirical evaluation of gated recurrent neural networks on sequence modeling","author":"chung","year":"2014","journal-title":"arXiv 1412 3555"},{"key":"ref24","article-title":"Sequence to sequence learning with neural networks","author":"sutskever","year":"2014","journal-title":"Adv NIPS"},{"key":"ref23","article-title":"Deep recurrent neural networks for time series prediction","author":"prasad","year":"2014","journal-title":"arXiv 1407 5949"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1016\/j.pmcj.2012.07.003"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.3115\/v1\/W14-4012"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8948470\/08981913.pdf?arnumber=8981913","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,12,17]],"date-time":"2021-12-17T19:51:24Z","timestamp":1639770684000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8981913\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":33,"URL":"https:\/\/doi.org\/10.1109\/access.2020.2971579","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020]]}}}