{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,20]],"date-time":"2024-08-20T11:19:21Z","timestamp":1724152761979},"reference-count":97,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/100010666","name":"H2020 Research Infrastructures","doi-asserted-by":"publisher","award":["777435","VEGA 2\/0125\/20"],"id":[{"id":"10.13039\/100010666","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/access.2020.2968718","type":"journal-article","created":{"date-parts":[[2020,1,22]],"date-time":"2020-01-22T21:40:41Z","timestamp":1579729241000},"page":"19696-19716","source":"Crossref","is-referenced-by-count":43,"title":["Deep Learning for Proactive Network Monitoring and Security Protection"],"prefix":"10.1109","volume":"8","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-6769-0195","authenticated-orcid":false,"given":"Giang","family":"Nguyen","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4424-4221","authenticated-orcid":false,"given":"Stefan","family":"Dlugolinsky","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4852-1601","authenticated-orcid":false,"given":"Viet","family":"Tran","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-0013-4602","authenticated-orcid":false,"given":"Alvaro","family":"Lopez Garcia","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","first-page":"760","article-title":"Particle swarm optimization","volume":"93","author":"kennedy","year":"2010","journal-title":"Encyc of Mach Learn"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.7551\/mitpress\/1090.001.0001"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1002\/for.940"},{"key":"ref32","article-title":"Machine learning vs statistical methods for time series forecasting: Size matters","author":"cerqueira","year":"2019","journal-title":"arXiv 1909 13316"},{"key":"ref31","first-page":"19","article-title":"Limitation of ARIMA models in financial and monetary economics","volume":"23","author":"petric?","year":"2016","journal-title":"Theoretical and Applied Economics"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1016\/j.cie.2017.10.033"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1016\/B978-0-12-813314-9.00010-4"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1016\/j.procs.2017.05.121"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1007\/s10586-019-02917-1"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1016\/j.apenergy.2017.04.048"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1016\/j.engappai.2010.09.007"},{"key":"ref27","doi-asserted-by":"crossref","DOI":"10.1515\/9780691218632","volume":"2","author":"hamilton","year":"1994","journal-title":"Time Series Analysis"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0194889"},{"key":"ref20","year":"2019","journal-title":"Snort—Network Intrusion Detection and Prevention System"},{"key":"ref22","year":"2019","journal-title":"Monitor Anything Zabbix—Solutions for any Kind of it Infrastructure Services Applications Resources"},{"key":"ref21","year":"2019","journal-title":"Suricata |Open Source IDS\/IPS\/NSM Engine"},{"key":"ref24","year":"2019","journal-title":"Rapid7 Secure Advancement"},{"key":"ref23","year":"2019","journal-title":"Ossec—World’s Most Widely Used Host Intrusion Detection System"},{"key":"ref26","first-page":"277","author":"dlugolinsky","year":"2017","journal-title":"Proc Int Conf Intell Eng Syst"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1007\/s10586-016-0653-y"},{"key":"ref50","first-page":"5998","article-title":"Attention is all you need","author":"vaswani","year":"2017","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref51","article-title":"A comparison of LSTMs and attention mechanisms for forecasting financial time series","author":"hollis","year":"2018","journal-title":"arXiv 1812 07699"},{"key":"ref59","year":"2019","journal-title":"Tensor processing unit"},{"key":"ref58","year":"2019","journal-title":"High Performance Computing Build Scalable GPU-Accelerated Applications Faster"},{"key":"ref57","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-55606-2"},{"key":"ref56","author":"vorhies","year":"2018","journal-title":"Temporal Convolutional Nets (TCNs) Take Over From RNNs for NLP Predictions"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-30490-4_56"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1007\/s10994-019-05815-0"},{"key":"ref53","article-title":"An empirical evaluation of generic convolutional and recurrent networks for sequence modeling","author":"bai","year":"2018","journal-title":"arXiv 1803 01271"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1016\/j.procs.2018.07.298"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1155\/2014\/739768"},{"key":"ref4","year":"2019","journal-title":"6 Steps to Cyber Security"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1201\/b10867"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1016\/j.jnca.2015.11.016"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1201\/b11371"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1016\/j.jnca.2012.09.004"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.18653\/v1\/D15-1166"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1201\/b15088"},{"key":"ref9","year":"2019","journal-title":"Introduction to Intrusion Prevention Systems—Detect and Block Attacks in Real Time"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1162\/neco.1997.9.8.1735"},{"key":"ref45","article-title":"Deep learning for time-series analysis","author":"gamboa","year":"2017","journal-title":"arXiv 1701 01887"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/78.650093"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/SMARTCOMP.2019.00059"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1016\/j.advengsoft.2016.01.008"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2015.10.034"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.2991\/ijcis.d.190930.003"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-14812-6_31"},{"key":"ref73","first-page":"843","article-title":"Unsupervised learning of video representations using lstms","author":"srivastava","year":"2015","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref72","author":"olah","year":"2015","journal-title":"Understanding LSTM Networks"},{"key":"ref71","first-page":"3371","article-title":"Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion","volume":"11","author":"vincent","year":"2010","journal-title":"J Mach Learn Res"},{"key":"ref70","article-title":"Empirical evaluation of gated recurrent neural networks on sequence modeling","author":"chung","year":"2014","journal-title":"arXiv 1412 3555"},{"key":"ref76","author":"remy","year":"2019","journal-title":"Keras TCN GitHub"},{"key":"ref77","article-title":"Adam: A method for stochastic optimization","author":"kingma","year":"2014","journal-title":"arXiv 1412 6980"},{"key":"ref74","year":"2019","journal-title":"Keras Self-Attention GitHub"},{"key":"ref75","article-title":"WaveNet: A generative model for raw audio","author":"van den oord","year":"2016","journal-title":"arXiv 1609 03499"},{"key":"ref78","article-title":"Activation functions: Comparison of trends in practice and research for deep learning","author":"nwankpa","year":"2018","journal-title":"arXiv 1811 03378"},{"key":"ref79","doi-asserted-by":"publisher","DOI":"10.1016\/j.ijforecast.2015.12.003"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-57959-7"},{"key":"ref62","doi-asserted-by":"publisher","DOI":"10.1016\/j.datak.2018.03.002"},{"key":"ref61","author":"gil","year":"2019","journal-title":"Security with AI and Machine Learning"},{"key":"ref63","year":"2019","journal-title":"Designing and Enabling e-Infrastructures for Intensive Processing in a Hybrid Datacloud"},{"key":"ref64","doi-asserted-by":"publisher","DOI":"10.1007\/s10586-018-2835-2"},{"key":"ref65","doi-asserted-by":"publisher","DOI":"10.1016\/j.cose.2017.11.016"},{"key":"ref66","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2930832"},{"key":"ref67","year":"2017","journal-title":"Bro Analysis Tools (BAT) GitHub"},{"key":"ref68","author":"box","year":"2015","journal-title":"Time Series Analysis Forecasting and Control"},{"key":"ref2","year":"2017","journal-title":"Cisco 2017 Midyear Cybersecurity Report Predicts New Destruction of Service Attacks Scale and Impact of Threats Grow"},{"key":"ref69","author":"hyndman","year":"2018","journal-title":"Forecasting Principles and Practice"},{"key":"ref1","year":"2019","journal-title":"The European Union Agency for Network and Information Security—ENISA Threat Landscape Report 2018"},{"key":"ref95","author":"dlugolinsky","year":"2019","journal-title":"Deep as a Service Mods Container"},{"key":"ref94","author":"dlugolinsky","year":"2019","journal-title":"Massive Online Data Streams (MODS)"},{"key":"ref93","year":"2019","journal-title":"DEEP-Hybrid-DataCloud Deep Open Catalog—Deep Marketplace"},{"key":"ref92","doi-asserted-by":"publisher","DOI":"10.1007\/s10463-008-0197-x"},{"key":"ref91","doi-asserted-by":"publisher","DOI":"10.1214\/09-SS054"},{"key":"ref90","doi-asserted-by":"publisher","DOI":"10.1371\/journal.pone.0087357"},{"key":"ref96","doi-asserted-by":"publisher","DOI":"10.21105\/joss.01517"},{"key":"ref97","author":"dlugolinsky","year":"2019","journal-title":"Aggregated Network Monitoring Data"},{"key":"ref10","year":"2019","journal-title":"The Zeek Network Security Monitor"},{"key":"ref11","year":"2019","journal-title":"Nessus Professional—Vulnerability Scanner—Tenable"},{"key":"ref12","year":"2019","journal-title":"Zabbix Documentation Predictive Trigger Functions"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1007\/s10462-018-09679-z"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1002\/widm.1232"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2013.04.016"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.trc.2015.03.014"},{"key":"ref82","author":"foundation","year":"2019","journal-title":"Apache Parquet—Columnar Storage Format"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-30241-2_50"},{"key":"ref81","article-title":"Bayesian optimization of composite functions","author":"astudillo","year":"2019","journal-title":"arXiv 1906 01537"},{"key":"ref18","author":"goodfellow","year":"2016","journal-title":"Deep Learning"},{"key":"ref84","author":"downey","year":"2016","journal-title":"Think DSP Digital Signal Processing in Python"},{"key":"ref19","author":"foundation","year":"2019","journal-title":"Apache Spark—Unified Analytics Engine for Big Data"},{"key":"ref83","author":"foundation","year":"2019","journal-title":"Apache Arrow A Cross-Language Development Platform for in-Memory Data"},{"key":"ref80","doi-asserted-by":"publisher","DOI":"10.1007\/s13748-019-00185-z"},{"key":"ref89","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevE.69.066138"},{"key":"ref85","author":"foundation","year":"2019","journal-title":"Spark SQL Apache Spark’s Module for Working With Structured Data"},{"key":"ref86","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2013.07.003"},{"key":"ref87","author":"peyre","year":"2019","journal-title":"Mathematical Foundations of Data Sciences CNRS and DMA Ecole Normale Superieure"},{"key":"ref88","doi-asserted-by":"publisher","DOI":"10.1109\/TNNLS.2019.2944298"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8948470\/08966259.pdf?arnumber=8966259","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,12,17]],"date-time":"2021-12-17T19:51:08Z","timestamp":1639770668000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8966259\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":97,"URL":"https:\/\/doi.org\/10.1109\/access.2020.2968718","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020]]}}}