{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,11]],"date-time":"2024-09-11T20:50:29Z","timestamp":1726087829903},"reference-count":37,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Basic Research Program of China","doi-asserted-by":"publisher","award":["2017YFC0805500"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Shanghai Municipal Science and Technology Major Project","award":["2018SHZDZX01"]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61603258"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/access.2020.2964115","type":"journal-article","created":{"date-parts":[[2020,1,7]],"date-time":"2020-01-07T18:33:01Z","timestamp":1578421981000},"page":"10040-10047","source":"Crossref","is-referenced-by-count":36,"title":["PGCN-TCA: Pseudo Graph Convolutional Network With Temporal and Channel-Wise Attention for Skeleton-Based Action Recognition"],"prefix":"10.1109","volume":"8","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4974-3476","authenticated-orcid":false,"given":"Hongye","family":"Yang","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9935-5156","authenticated-orcid":false,"given":"Yuzhang","family":"Gu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0742-2102","authenticated-orcid":false,"given":"Jianchao","family":"Zhu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5628-7640","authenticated-orcid":false,"given":"Keli","family":"Hu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3307-9838","authenticated-orcid":false,"given":"Xiaolin","family":"Zhang","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref33","article-title":"Two-stream adaptive graph convolutional networks for skeleton-based action recognition","author":"shi","year":"2019","journal-title":"Proc CVPR"},{"key":"ref32","article-title":"A Riemannian network for SPD matrix learning","author":"huang","year":"2017","journal-title":"Proc 31st AAAI Conf Artif Intell"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01234-2_1"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00745"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.137"},{"key":"ref36","first-page":"106","article-title":"Skeleton-based action recognition with spatial reasoning and temporal stack learning","author":"si","year":"2018","journal-title":"Proc Eur Conf Comput Vis"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00558"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/227"},{"key":"ref10","first-page":"359","article-title":"Recognition and segmentation of 3-D human action using HMM and multi-class Adaboost","author":"lv","year":"2006","journal-title":"Proc Eur Conf Comput Vis"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.imavis.2009.08.003"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.82"},{"key":"ref13","first-page":"1110","article-title":"Hierarchical recurrent neural network for skeleton based action recognition","author":"du","year":"2015","journal-title":"Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46487-9_50"},{"key":"ref15","article-title":"An end-to-end spatio-temporal attention model for human action recognition from skeleton data","author":"song","year":"2017","journal-title":"Proc 31st AAAI Conf Artif Intell"},{"key":"ref16","first-page":"3368","article-title":"Recurrent relational networks","author":"palm","year":"2018","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref17","article-title":"Relational network for skeleton-based action recognition","author":"zheng","year":"2018","journal-title":"arXiv 1805 02556"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2017.207"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2017.02.030"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2019.8802917"},{"key":"ref4","article-title":"Spatial temporal graph convolutional networks for skeleton-based action recognition","author":"yan","year":"2018","journal-title":"Proc 32nd AAAI Conf Artif Intell"},{"key":"ref27","article-title":"Part-based graph convolutional network for action recognition","author":"thakkar","year":"2018","journal-title":"arXiv 1809 04983"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1145\/3123266.3123277"},{"key":"ref6","article-title":"Semi-supervised classification with graph convolutional networks","author":"kipf","year":"2016","journal-title":"arXiv 1609 02907"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2019.00371"},{"key":"ref5","first-page":"3844","article-title":"Convolutional neural networks on graphs with fast localized spectral filtering","author":"defferrard","year":"2016","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref8","first-page":"1010","article-title":"NTU RGB+D: A large scale dataset for 3D human activity analysis","author":"shahroudy","year":"2016","journal-title":"Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)"},{"key":"ref7","first-page":"2014","article-title":"Learning convolutional neural networks for graphs","author":"niepert","year":"2016","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.24963\/ijcai.2018\/109"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1145\/1073204.1073247"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/MMUL.2012.24"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.486"},{"key":"ref22","first-page":"597","article-title":"Skeleton-based action recognition with convolutional neural networks","author":"li","year":"2017","journal-title":"Proc IEEE Int Conf Multimedia Expo Workshops (ICMEW)"},{"key":"ref21","article-title":"Two-stream 3D convolutional neural network for skeleton-based action recognition","author":"liu","year":"2017","journal-title":"arXiv 1705 08106"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/ACPR.2015.7486569"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1145\/2964284.2967191"},{"key":"ref26","article-title":"Spatio-temporal graph convolution for skeleton based action recognition","author":"li","year":"2018","journal-title":"Proc 32nd AAAI Conf Artif Intell"},{"key":"ref25","first-page":"601","article-title":"Skeleton based action recognition using translation-scale invariant image mapping and multi-scale deep CNN","author":"li","year":"2017","journal-title":"Proc IEEE Int Conf Multimedia Expo Workshops (ICMEW)"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8948470\/08950167.pdf?arnumber=8950167","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,12]],"date-time":"2022-01-12T15:57:06Z","timestamp":1642003026000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8950167\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":37,"URL":"https:\/\/doi.org\/10.1109\/access.2020.2964115","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2020]]}}}