{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,6]],"date-time":"2025-04-06T10:24:27Z","timestamp":1743935067504,"version":"3.37.3"},"reference-count":45,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2020,1,1]],"date-time":"2020-01-01T00:00:00Z","timestamp":1577836800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100012245","name":"Science and Technology Planning Project of Guangdong Province","doi-asserted-by":"publisher","award":["2019B010116001","2016B010124012"],"id":[{"id":"10.13039\/501100012245","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61902232","61902231"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100003453","name":"Natural Science Foundation of Guangdong Province","doi-asserted-by":"publisher","award":["2018A030313291"],"id":[{"id":"10.13039\/501100003453","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Education Science Planning Project of Guangdong Province","award":["2018GXJK048"]},{"name":"STU Scientfic Research Foundation for Talents","award":["NTF18006"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2020]]},"DOI":"10.1109\/access.2019.2963784","type":"journal-article","created":{"date-parts":[[2020,1,3]],"date-time":"2020-01-03T20:55:37Z","timestamp":1578084937000},"page":"6505-6514","source":"Crossref","is-referenced-by-count":99,"title":["PSO-ELM: A Hybrid Learning Model for Short-Term Traffic Flow Forecasting"],"prefix":"10.1109","volume":"8","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-4510-341X","authenticated-orcid":false,"given":"Weihong","family":"Cai","sequence":"first","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-8794-0470","authenticated-orcid":false,"given":"Junjie","family":"Yang","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-2104-3758","authenticated-orcid":false,"given":"Yidan","family":"Yu","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-1641-967X","authenticated-orcid":false,"given":"Youyi","family":"Song","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0003-1920-8891","authenticated-orcid":false,"given":"Teng","family":"Zhou","sequence":"additional","affiliation":[]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7059-0929","authenticated-orcid":false,"given":"Jing","family":"Qin","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"journal-title":"Forecasting Principles and Practice","year":"2018","author":"hyndman","key":"ref39"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2013.2278192"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/ICMLC.2016.7873027"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2009.12.007"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1016\/j.patcog.2005.03.028"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2005.12.126"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2016.09.046"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2013.05.047"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/SBRN.2012.26"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1016\/j.rser.2015.04.065"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1016\/j.physa.2019.122601"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2013.2247040"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/MSN48538.2019.00093"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1016\/j.trb.2015.02.008"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1016\/j.trc.2010.10.002"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2011.2174634"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2018.2854913"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1049\/iet-its.2018.5315"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1016\/j.trc.2014.02.009"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1016\/j.trc.2014.06.011"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2014.03.128"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2894074"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1007\/s11063-018-9804-x"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1016\/j.dam.2019.02.041"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2014.2345663"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2011.2174051"},{"key":"ref29","doi-asserted-by":"crossref","first-page":"1988","DOI":"10.3390\/en10121988","article-title":"Day–ahead wind power forecasting using a two–stage hybrid modeling approach based on SCADA and meteorological information, and evaluating the impact of input–data dependency on forecasting accuracy","volume":"10","author":"zheng","year":"2017","journal-title":"Energies"},{"key":"ref5","first-page":"3712","article-title":"Multivariate short-term traffic flow forecasting using Bayesian vector autoregressive moving average model","volume":"2","author":"mai","year":"2012","journal-title":"Transp Res Board"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1061\/(ASCE)TE.1943-5436.0000656"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1016\/j.trc.2014.02.006"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2017.03.049"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1049\/iet-its.2018.5385"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1016\/j.trc.2013.11.011"},{"key":"ref20","doi-asserted-by":"crossref","first-page":"7191","DOI":"10.1007\/s00500-016-2262-3","article-title":"Application of reproducing kernel algorithm for solving second-order, two-point fuzzy boundary value problems","volume":"21","author":"arqub","year":"2017","journal-title":"Soft Comput"},{"key":"ref45","first-page":"31","article-title":"A neural network model for forecasting CO2 emission","volume":"6","author":"gallo","year":"2014","journal-title":"AGRIS On-line Papers in Economics and Informatics"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2019.01.015"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1080\/15472450.2019.1583965"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1016\/S1570-6672(13)60129-4"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1587\/transfun.E102.A.818"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1007\/s11063-015-9409-6"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2015.03.036"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1016\/j.enpol.2009.03.039"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1587\/transfun.E102.A.672"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1111\/j.1467-8667.2007.00489.x"},{"key":"ref25","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2010.11.032"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8948470\/08949498.pdf?arnumber=8949498","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,27]],"date-time":"2022-01-27T02:03:17Z","timestamp":1643248997000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8949498\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020]]},"references-count":45,"URL":"https:\/\/doi.org\/10.1109\/access.2019.2963784","relation":{},"ISSN":["2169-3536"],"issn-type":[{"type":"electronic","value":"2169-3536"}],"subject":[],"published":{"date-parts":[[2020]]}}}