{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,6]],"date-time":"2024-09-06T08:39:41Z","timestamp":1725611981347},"reference-count":56,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61773389","61833016","61573365"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2019]]},"DOI":"10.1109\/access.2019.2951030","type":"journal-article","created":{"date-parts":[[2019,11,5]],"date-time":"2019-11-05T04:45:53Z","timestamp":1572929153000},"page":"159262-159283","source":"Crossref","is-referenced-by-count":50,"title":["MSARN: A Deep Neural Network Based on an Adaptive Recalibration Mechanism for Multiscale and Arbitrary-Oriented SAR Ship Detection"],"prefix":"10.1109","volume":"7","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-2621-8633","authenticated-orcid":false,"given":"Chen","family":"Chen","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-1314-2377","authenticated-orcid":false,"given":"Chuan","family":"He","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9983-5061","authenticated-orcid":false,"given":"Changhua","family":"Hu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9105-0120","authenticated-orcid":false,"given":"Hong","family":"Pei","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3354-9617","authenticated-orcid":false,"given":"Licheng","family":"Jiao","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","first-page":"448","article-title":"Batch normalization: Accelerating deep network training by reducing internal covariate shift","author":"ioffe","year":"2015","journal-title":"Proc Int Conf Mach Learn"},{"key":"ref38","first-page":"4278","article-title":"Inception-v4, inception-ResNet and the impact of residual connections on learning","author":"szegedy","year":"2017","journal-title":"Proc 31st AAAI Conf Artif Intell"},{"key":"ref33","article-title":"Deep learning for generic object detection: A survey","author":"liu","year":"2019","journal-title":"arXiv 1809 02165"},{"key":"ref32","doi-asserted-by":"crossref","first-page":"132","DOI":"10.3390\/rs10010132","article-title":"Automatic ship detection in remote sensing images from Google earth of complex scenes based on multiscale rotation dense feature pyramid networks","volume":"10","author":"yang","year":"2018","journal-title":"Remote Sens"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/IGARSS.2018.8519094"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2017.8296411"},{"key":"ref37","article-title":"GCNet: Non-local networks meet squeeze-excitation networks and beyond","author":"cao","year":"2019","journal-title":"arXiv 1904 11492"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00747"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00813"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00378"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/TMM.2018.2818020"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2930939"},{"key":"ref29","article-title":"R2CNN: Rotational region CNN for orientation robust scene text detection","author":"jiang","year":"2017","journal-title":"arXiv 1706 09579"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2869289"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/LGRS.2016.2616187"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2825376"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/RSIP.2017.7958815"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/BIGSARDATA.2017.8124934"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/LGRS.2018.2882551"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2018.2889353"},{"key":"ref26","doi-asserted-by":"crossref","first-page":"631","DOI":"10.3390\/rs11060631","article-title":"R-CNN-based ship detection from high resolution remote sensing imagery","volume":"11","author":"zhang","year":"2019","journal-title":"Remote Sens"},{"key":"ref25","doi-asserted-by":"crossref","first-page":"884","DOI":"10.3390\/rs11070884","article-title":"Spatial–spectral squeeze-and-excitation residual network for hyperspectral image classification","volume":"11","author":"wang","year":"2019","journal-title":"Remote Sens"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.1109\/LGRS.2018.2796604"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1016\/j.infrared.2019.06.015"},{"key":"ref56","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.212"},{"key":"ref55","article-title":"Tiny-DSOD: Lightweight object detection for resource-restricted usages","author":"li","year":"2018","journal-title":"arXiv 1807 11013"},{"key":"ref54","article-title":"Rethinking imagenet pre-training","author":"he","year":"2018","journal-title":"arXiv 1811 08883"},{"key":"ref53","doi-asserted-by":"publisher","DOI":"10.3390\/rs11070765"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1007\/s12567-018-0222-8"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/JSTARS.2017.2764506"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2016.2577031"},{"key":"ref40","author":"goodfellow","year":"2016","journal-title":"Deep Learning"},{"key":"ref12","first-page":"21","article-title":"SSD: Single shot multibox detector","author":"liu","year":"2016","journal-title":"Proc Eur Conf Comput Vis"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.91"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.690"},{"key":"ref15","article-title":"YOLOv3: An incremental improvement","author":"redmon","year":"2018","journal-title":"arXiv 1804 02767"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01252-6_24"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-009-0275-4"},{"key":"ref18","first-page":"740","article-title":"Microsoft COCO: Common objects in context","author":"lin","year":"2014","journal-title":"Proc Eur Conf Comput Vis"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.3390\/rs9080860"},{"key":"ref4","first-page":"2388","article-title":"Area ratio invariant feature group for ship detection in SAR imagery","volume":"11","author":"leng","year":"2017","journal-title":"IEEE J Sel Topics Appl Earth Observ Remote Sens"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/RSIP.2017.7958806"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.3390\/rs11050526"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2016.2606481"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/LGRS.2017.2654450"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/JSTARS.2016.2520518"},{"key":"ref49","article-title":"Bag of freebies for training object detection neural networks","author":"zhang","year":"2019","journal-title":"arXiv 1902 04103"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/LGRS.2015.2412174"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1016\/0196-6774(87)90020-4"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2869884"},{"key":"ref48","article-title":"TensorFlow: Large-scale machine learning on heterogeneous distributed systems","author":"abadi","year":"2016","journal-title":"arXiv 1603 04467"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.593"},{"key":"ref42","first-page":"3","article-title":"Group normalization","author":"wu","year":"2018","journal-title":"Proc Eur Conf Comput Vis"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00745"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.106"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8600701\/08890631.pdf?arnumber=8890631","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,26]],"date-time":"2022-01-26T02:15:34Z","timestamp":1643163334000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8890631\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"references-count":56,"URL":"https:\/\/doi.org\/10.1109\/access.2019.2951030","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019]]}}}