{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,10]],"date-time":"2025-04-10T23:04:00Z","timestamp":1744326240176,"version":"3.37.3"},"reference-count":67,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2019]]},"DOI":"10.1109\/access.2019.2949577","type":"journal-article","created":{"date-parts":[[2019,10,25]],"date-time":"2019-10-25T19:56:56Z","timestamp":1572033416000},"page":"155584-155600","source":"Crossref","is-referenced-by-count":48,"title":["MCADNNet: Recognizing Stages of Cognitive Impairment Through Efficient Convolutional fMRI and MRI Neural Network Topology Models"],"prefix":"10.1109","volume":"7","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-3314-4281","authenticated-orcid":false,"given":"Saman","family":"Sarraf","sequence":"first","affiliation":[]},{"given":"Danielle D.","family":"Desouza","sequence":"additional","affiliation":[]},{"given":"John A. E.","family":"Anderson","sequence":"additional","affiliation":[]},{"given":"Cristina","family":"Saverino","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.5220\/0006246306550662"},{"key":"ref38","article-title":"Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks","volume":"21","author":"basaia","year":"2019","journal-title":"Clin Neuro"},{"key":"ref33","first-page":"583","article-title":"Deep learning-based feature representation for AD\/MCI classification","author":"suk","year":"2013","journal-title":"Proc Int Conf Med Image Comput Comput -Assist Intervent"},{"key":"ref32","first-page":"1015","article-title":"Early diagnosis of Alzheimer’s disease with deep learning","author":"liu","year":"2014","journal-title":"Proc IEEE 11th Int Symp Biomed Imag (ISBI)"},{"key":"ref31","first-page":"2672","article-title":"Generative adversarial nets","author":"goodfellow","year":"2014","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref30","article-title":"SegNet: A deep convolutional encoder-decoder architecture for image segmentation","author":"badrinarayanan","year":"2015","journal-title":"arXiv 1511 00561"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1016\/j.jalz.2015.01.010"},{"key":"ref36","doi-asserted-by":"crossref","first-page":"203","DOI":"10.1007\/978-94-017-7239-6_14","article-title":"Deep learning in diagnosis of brain disorders","author":"suk","year":"2015","journal-title":"Recent Progress in Brain and Cognitive Eng"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1007\/s00429-013-0687-3"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2014.06.077"},{"key":"ref60","doi-asserted-by":"publisher","DOI":"10.1109\/JBHI.2017.2655720"},{"key":"ref62","first-page":"179","author":"basaia","year":"2018","journal-title":"Automatic classifcation of patients with Alzheimer’s disease (AD) and mild cognitive impairment (MCI) who will convert to AD using deep neural networks"},{"key":"ref61","doi-asserted-by":"publisher","DOI":"10.1148\/radiol.2018180958"},{"key":"ref63","first-page":"791","article-title":"Deep structural and clinical feature learning for semi-supervised multiclass prediction of Alzheimer’s disease","author":"jabason","year":"2018","journal-title":"Proc IEEE 61st Int Midwest Symp Circuits Syst (MWSCAS)"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.91"},{"key":"ref64","article-title":"Predicting Alzheimer’s disease progression using multi-modal deep learning approach","volume":"9","author":"lee","year":"2019","journal-title":"Sci Rep"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.634"},{"key":"ref65","doi-asserted-by":"publisher","DOI":"10.1016\/j.neuroimage.2019.01.031"},{"key":"ref66","article-title":"Automated classification of Alzheimer’s disease and mild cognitive impairment using a single MRI and deep neural networks","volume":"21","author":"basaia","year":"2019","journal-title":"Clin Neuro"},{"key":"ref29","article-title":"SqueezeNet: AlexNet-level accuracy with \n$50\\times$\n fewer parameters and <0.5 MB model size","author":"iandola","year":"2016","journal-title":"arXiv 1602 07360"},{"key":"ref67","doi-asserted-by":"publisher","DOI":"10.1016\/j.imu.2018.12.001"},{"key":"ref2","first-page":"1","article-title":"Mild cognitive impairment: A comprehensive review","volume":"4","author":"tampi","year":"2015","journal-title":"Healthy Ageing Res"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1017\/S1041610207006394"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/MCI.2010.938364"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2014.09.003"},{"key":"ref21","first-page":"625","article-title":"Why does unsupervised pre-training help deep learning?","volume":"11","author":"erhan","year":"2010","journal-title":"J Mach Learn Res"},{"key":"ref24","first-page":"1097","article-title":"ImageNet classification with deep convolutional neural networks","author":"krizhevsky","year":"2012","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref25","article-title":"Very deep convolutional networks for large-scale image recognition","author":"simonyan","year":"2014","journal-title":"arXiv 1409 1556"},{"key":"ref50","doi-asserted-by":"publisher","DOI":"10.3389\/fnins.2018.00777"},{"key":"ref51","doi-asserted-by":"publisher","DOI":"10.1016\/j.jalz.2018.07.131"},{"key":"ref59","doi-asserted-by":"publisher","DOI":"10.1016\/j.jneumeth.2017.12.011"},{"key":"ref58","article-title":"Alzheimer’s disease diagnostics by adaptation of 3D convolutional network","author":"hosseini-asl","year":"2016","journal-title":"arXiv 1607 00455"},{"key":"ref57","article-title":"DeepAD: Alzheimer’s disease classification via deep convolutional neural networks using MRI and fMRI","author":"sarraf","year":"2016","journal-title":"BioRxiv"},{"key":"ref56","first-page":"816","article-title":"Deep learning-based pipeline to recognize Alzheimer’s disease using fMRI data","author":"sarraf","year":"2016","journal-title":"Proc IEEE Future Technol Conf (FTC)"},{"key":"ref55","doi-asserted-by":"publisher","DOI":"10.1006\/nimg.2002.1132"},{"key":"ref54","doi-asserted-by":"publisher","DOI":"10.1002\/hbm.10062"},{"key":"ref53","first-page":"1660","article-title":"Brain MR image analysis using discrete wavelet transform with fractal feature analysis","author":"srinivasan","year":"2018","journal-title":"Proc 2nd Int Conf Electron Commun Aerosp Technol (ICECA)"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.3389\/fninf.2018.00023"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.9778\/cmajo.20150057"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1001\/archneur.58.3.397"},{"key":"ref40","article-title":"Predicting Alzheimer’s disease: A neuroimaging study with 3D convolutional neural networks","author":"payan","year":"2015","journal-title":"arXiv 1502 02506"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1001\/archneur.56.3.303"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1001\/archneur.61.1.59"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1093\/brain\/awm336"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1093\/brain\/awp062"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1111\/j.1365-2796.2004.01380.x"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1016\/j.jalz.2011.03.008"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/5.726791"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1145\/2647868.2654889"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1159\/000272424"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1212\/WNL.56.9.1133"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1111\/j.1365-2796.2004.01388.x"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1097\/JGP.0b013e3181c37ce9"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.3233\/JAD-2009-1120"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1159\/000112509"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1016\/j.dadm.2018.08.013"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1177\/0706743716648296"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1016\/j.cels.2016.01.009"},{"key":"ref45","first-page":"633","article-title":"Manifold learning of brain MRIs by deep learning","author":"brosch","year":"2013","journal-title":"Proc Int Conf Med Image Comput Comput -Assist Intervent"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2015.08.025"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2015.7301312"},{"article-title":"Automatic classification of Alzheimer’ disease from structural MRI","year":"2015","author":"arvesen","key":"ref42"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1109\/TBME.2014.2372011"},{"key":"ref44","first-page":"2028","article-title":"High-level feature based PET image retrieval with deep learning architecture","volume":"55","author":"liu","year":"2014","journal-title":"J Nucl Med"},{"key":"ref43","article-title":"Learning deep convolutional features for MRI based Alzheimer’s disease classification","author":"liu","year":"2014","journal-title":"arXiv 1404 3366"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8600701\/08883215.pdf?arnumber=8883215","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,26]],"date-time":"2022-01-26T02:09:09Z","timestamp":1643162949000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8883215\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"references-count":67,"URL":"https:\/\/doi.org\/10.1109\/access.2019.2949577","relation":{},"ISSN":["2169-3536"],"issn-type":[{"type":"electronic","value":"2169-3536"}],"subject":[],"published":{"date-parts":[[2019]]}}}