{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,30]],"date-time":"2024-08-30T11:41:18Z","timestamp":1725018078182},"reference-count":57,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"name":"\u201cThe Cross-Ministry Giga KOREA Project\u201d"},{"name":"Korean Government (MSIT), Development of Mobile Edge Computing Platform Technology for URLLC Services","award":["GK18P0400"]},{"DOI":"10.13039\/501100010418","name":"Institute for Information and communications Technology Promotion","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100010418","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Korean Government (MSIT) (Service Mobility Support Distributed Cloud Technology)","award":["2017-0-00294","2017-0-00294"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2019]]},"DOI":"10.1109\/access.2019.2935389","type":"journal-article","created":{"date-parts":[[2019,8,14]],"date-time":"2019-08-14T20:01:17Z","timestamp":1565812877000},"page":"114909-114922","source":"Crossref","is-referenced-by-count":7,"title":["Real-Time Control for Power Cost Efficient Deep Learning Processing With Renewable Generation"],"prefix":"10.1109","volume":"7","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-1314-8189","authenticated-orcid":false,"given":"Dong-Ki","family":"Kang","sequence":"first","affiliation":[]},{"given":"Chan-Hyun","family":"Youn","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2017.2698603"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/INFOCOM.2017.8057205"},{"key":"ref33","year":"2019","journal-title":"Federal Energy Regulatory Commission"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2009.5206848"},{"key":"ref31","first-page":"1097","article-title":"Imagenet classification with deep convolutional neural networks","author":"krizhevsky","year":"2012","journal-title":"Proc Adv Neural Inf Process Syst"},{"key":"ref30","year":"2019","journal-title":"The CIFAR dataset"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/IPDPS.2014.23"},{"key":"ref36","year":"2019","journal-title":"NVIDIA GTX1080 Whitepaper"},{"key":"ref35","article-title":"Accurate, large minibatch SGD: Training imagenet in 1 hour","author":"goyal","year":"2017","journal-title":"arXiv 1706 02677"},{"key":"ref34","year":"2019","journal-title":"Measurement and Instrumentation Data Center (MIDC)"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.308"},{"key":"ref27","article-title":"Very deep convolutional networks for large-scale image recognition","author":"simonyan","year":"2014","journal-title":"arXiv 1409 1556"},{"key":"ref29","year":"2019","journal-title":"MNIST Dataset"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1017\/atsip.2013.9"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1145\/3234150"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/IPDPSW.2017.36"},{"key":"ref22","year":"2019","journal-title":"Nvidia DGX-1"},{"key":"ref21","year":"2019","journal-title":"NVIDIA Corporation"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1017\/S0962492900002518"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1016\/j.automatica.2014.10.128"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref25","author":"nocedal","year":"2006","journal-title":"Numerical Optimization"},{"key":"ref50","first-page":"5","article-title":"Power budgeting for virtualized data centers","volume":"59","author":"lim","year":"2011","journal-title":"Proc Usenix Ann Technical Conf (Usenix '99)"},{"key":"ref51","author":"edgar","year":"2003","journal-title":"Optimization of Chemical Processes"},{"key":"ref57","year":"2019","journal-title":"Microsoft PowerShell Scripts"},{"key":"ref56","year":"2019","journal-title":"Microsoft CNTK"},{"key":"ref55","year":"2019","journal-title":"Oracle Java SDK"},{"key":"ref54","year":"2019","journal-title":"Guru3D NVIDIA Inspector"},{"key":"ref53","year":"2019","journal-title":"Nvidia Management Library Nvml"},{"key":"ref52","doi-asserted-by":"publisher","DOI":"10.1016\/j.arcontrol.2004.05.001"},{"key":"ref10","first-page":"69","article-title":"Asymmetric traffic provisioning in integrated cloud-fog based on flexible multi-flow optical transponder","volume":"16","author":"kim","year":"2019","journal-title":"China Commun"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1016\/j.future.2018.05.015"},{"key":"ref40","doi-asserted-by":"publisher","DOI":"10.1109\/GREENCOMP.2010.5598315"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1016\/j.comcom.2019.04.010"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2017.2764957"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/TSC.2016.2592520"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1145\/3276774.3276775"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.comnet.2015.11.024"},{"key":"ref17","doi-asserted-by":"publisher","DOI":"10.1109\/LCOMM.2018.2825444"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/TPWRS.2018.2881359"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1145\/3007787.3001165"},{"key":"ref4","year":"2019","journal-title":"ILSVRC 2012 Competition"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2019.2892767"},{"key":"ref6","author":"gao","year":"2019","journal-title":"Machine learning applications for data center optimization"},{"key":"ref5","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"lecun","year":"2015","journal-title":"Nature"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2883252"},{"key":"ref7","article-title":"Transforming cooling optimization for green data center via deep reinforcement learning","author":"li","year":"2017","journal-title":"arXiv 1709 05077"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/TSG.2011.2160745"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/COMST.2018.2846401"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1109\/ISAP.2007.4441657"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2888839"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1109\/TPWRS.2016.2643624"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/TSG.2014.2313612"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/MASCOTS.2012.51"},{"key":"ref41","first-page":"12","article-title":"Evaluating the effectiveness of model-based power characterization","volume":"20","author":"mccullough","year":"2011","journal-title":"Proc USENIX Annu Tech Conf"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/JIOT.2018.2868616"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1109\/TII.2019.2892767"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8600701\/08798637.pdf?arnumber=8798637","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,12]],"date-time":"2022-01-12T16:31:55Z","timestamp":1642005115000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8798637\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"references-count":57,"URL":"https:\/\/doi.org\/10.1109\/access.2019.2935389","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019]]}}}