{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,16]],"date-time":"2024-09-16T02:35:11Z","timestamp":1726454111271},"reference-count":50,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/legalcode"}],"funder":[{"DOI":"10.13039\/501100004377","name":"Hong Kong Polytechnic University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004377","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004377","name":"Hong Kong Polytechnic University","doi-asserted-by":"publisher","award":["PolyU 152208\/17E"],"id":[{"id":"10.13039\/501100004377","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2019]]},"DOI":"10.1109\/access.2019.2934078","type":"journal-article","created":{"date-parts":[[2019,8,8]],"date-time":"2019-08-08T19:54:31Z","timestamp":1565294071000},"page":"129112-129126","source":"Crossref","is-referenced-by-count":16,"title":["Reference Based Face Super-Resolution"],"prefix":"10.1109","volume":"7","author":[{"given":"Zhi-Song","family":"Liu","sequence":"first","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8280-0367","authenticated-orcid":false,"given":"Wan-Chi","family":"Siu","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-1473-094X","authenticated-orcid":false,"given":"Yui-Lam","family":"Chan","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","first-page":"1","article-title":"Auto-encoding variational Bayes","author":"kingma","year":"2014","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref38","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00652"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01252-6_12"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01240-3_14"},{"key":"ref31","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.570"},{"key":"ref30","article-title":"Global-local face upsampling network","author":"tuzel","year":"2016","journal-title":"arXiv 1603 07235"},{"key":"ref37","first-page":"1","article-title":"Unrolled generative adversarial networks","author":"metz","year":"2017","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref36","first-page":"7982","article-title":"Image super-resolution by neural texture transfer","author":"zhang","year":"2019","journal-title":"Proc IEEE Int Conf Comput Vis Pattern Recognit (CVPR)"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00264"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-030-01261-8_17"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46454-1_20"},{"key":"ref27","article-title":"ESRGAN: Enhanced super-resolution generative adversarial networks","author":"wang","year":"2018","journal-title":"Proc IEEE Eur Conf Comput Workshops (ECCVW)"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-46454-1_37"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2004.1315043"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/38.988747"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.181"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2017.151"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.19"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.23919\/APSIPA.2018.8659476"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2018.00179"},{"key":"ref26","article-title":"A neural algorithm of artistic style","author":"gatys","year":"2015","journal-title":"arXiv 1508 06576"},{"key":"ref25","article-title":"Hierarchical back projection network for image super-resolution","author":"liu","year":"2019","journal-title":"Proc IEEE Int Conf Comput Vis Pattern Recognit Workshops (CVPRW)"},{"key":"ref50","first-page":"1","article-title":"Defense-GAN: Protecting classifiers against adversarial attacks using generative models","author":"samangouei","year":"2018","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref10","doi-asserted-by":"crossref","first-page":"937","DOI":"10.1109\/TCSVT.2015.2513661","article-title":"Learning hierarchical decision trees for single-image super-resolution","volume":"27","author":"huang","year":"2015","journal-title":"IEEE Trans Circuits Syst Video Technol"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/CVPRW.2017.144"},{"key":"ref40","first-page":"3483","article-title":"Variational dropout and the local reparameterization trick","author":"kingma","year":"2015","journal-title":"Proc Adv Neural Inf Process Syst (NIPS)"},{"key":"ref12","doi-asserted-by":"publisher","DOI":"10.1109\/ICIT.2017.7915501"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.1109\/ISCAS.2017.8050991"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1109\/ICIP.2018.8451349"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref16","first-page":"1","article-title":"Very deep convolutional networks for large-scale image recognition","author":"simonyan","year":"2014","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref17","first-page":"2672","article-title":"Generative adversarial nets","author":"goodfellow","year":"2014","journal-title":"Proc Adv Neural Inf Process Syst (NIPS)"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2015.2439281"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.182"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-16817-3_8"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2013.241"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2014.2347201"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/APSIPA.2015.7415447"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2017.2717181"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/TMM.2014.2311320"},{"key":"ref49","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.282"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2018.2813163"},{"key":"ref46","doi-asserted-by":"publisher","DOI":"10.1117\/12.872606"},{"key":"ref45","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.624"},{"key":"ref48","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-25958-1_8"},{"key":"ref47","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2014.2352497"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/FG.2018.00020"},{"key":"ref41","first-page":"1","article-title":"Latent constraints: Learning to generate conditionally from unconditional generative models","author":"engel","year":"2018","journal-title":"Proc Int Conf Learn Represent (ICLR)"},{"key":"ref44","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.425"},{"key":"ref43","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-33712-3_49"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8600701\/08792098.pdf?arnumber=8792098","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,12]],"date-time":"2022-01-12T16:31:28Z","timestamp":1642005088000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8792098\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"references-count":50,"URL":"https:\/\/doi.org\/10.1109\/access.2019.2934078","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019]]}}}