{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,1]],"date-time":"2025-04-01T09:45:00Z","timestamp":1743500700471,"version":"3.37.3"},"reference-count":37,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/OAPA.html"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2019]]},"DOI":"10.1109\/access.2019.2904620","type":"journal-article","created":{"date-parts":[[2019,3,12]],"date-time":"2019-03-12T22:31:30Z","timestamp":1552429890000},"page":"42210-42219","source":"Crossref","is-referenced-by-count":270,"title":["An Intrusion Detection Model Based on Feature Reduction and Convolutional Neural Networks"],"prefix":"10.1109","volume":"7","author":[{"ORCID":"https:\/\/orcid.org\/0000-0001-8785-1905","authenticated-orcid":false,"given":"Yihan","family":"Xiao","sequence":"first","affiliation":[]},{"given":"Cheng","family":"Xing","sequence":"additional","affiliation":[]},{"given":"Taining","family":"Zhang","sequence":"additional","affiliation":[]},{"given":"Zhongkai","family":"Zhao","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref33","first-page":"212","article-title":"Improving neural networks by preventing co-adaptation of feature detectors","volume":"3","author":"hinton","year":"2012","journal-title":"Comput Sci"},{"key":"ref32","first-page":"448","article-title":"Batch normalization: Accelerating deep network training by reducing internal covariate shift","author":"ioffe","year":"2015","journal-title":"Mach Learn Res"},{"year":"0","key":"ref31"},{"key":"ref30","first-page":"2825","article-title":"Scikit-learn: Machine learning in python","volume":"12","author":"pedregosa","year":"2011","journal-title":"J Mach Learn Res"},{"key":"ref37","doi-asserted-by":"publisher","DOI":"10.1109\/MCOM.2017.1700452"},{"key":"ref36","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2010.02.102"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1109\/ICACCI.2017.8126018"},{"key":"ref34","doi-asserted-by":"publisher","DOI":"10.1109\/ICACCI.2017.8126009"},{"key":"ref10","first-page":"40","article-title":"Enhanced face recognition based on PCA and SVM","volume":"117","author":"narayana","year":"2015","journal-title":"Int J Comput Appl"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1515\/jisys-2016-0105"},{"key":"ref12","first-page":"243","article-title":"Semi-supervised learning with generative adversarial networks on digital signal modulation classification","volume":"55","author":"tu","year":"2018","journal-title":"Comput Mater Continua"},{"key":"ref13","doi-asserted-by":"publisher","DOI":"10.3390\/s16101675"},{"key":"ref14","doi-asserted-by":"publisher","DOI":"10.1186\/s13638-017-0949-5"},{"key":"ref15","article-title":"A heuristic approach to enhance the performance of intrusion system using machine learning algoriths","author":"chung","year":"2015","journal-title":"Proc Korea Inst Inf Secur Cryptol Conf"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2015.08.009"},{"key":"ref17","first-page":"11","article-title":"Hybrid machine learning technique for intrusion detection system","author":"tahir","year":"2015","journal-title":"Proc 5th Int Conf Comout Inform (ICOCI)"},{"key":"ref18","doi-asserted-by":"publisher","DOI":"10.7840\/kics.2016.41.2.277"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-04062-7_17"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2887308"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/TVT.2018.2883669"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1145\/2649387.2649442"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1007\/s11227-017-2216-2"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/TVT.2018.2851783"},{"key":"ref29","doi-asserted-by":"publisher","DOI":"10.1007\/3-540-39945-3_11"},{"key":"ref5","doi-asserted-by":"publisher","DOI":"10.1109\/TVT.2018.2848294"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1007\/s11227-016-1681-3"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2867435"},{"key":"ref2","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2878595"},{"key":"ref9","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2014.01.028"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2849440"},{"key":"ref20","first-page":"96","article-title":"Detection method of LSSVM network intrusion based on hybrid kernel function","volume":"38","author":"fuqun","year":"2015","journal-title":"Modern Electronic Technology"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1016\/j.knosys.2017.03.012"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.1109\/CSFW.2001.930147"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/PlatCon.2016.7456805"},{"key":"ref23","first-page":"357","article-title":"Intrusion detection using deep belief network and extreme learning machine","author":"zahangir","year":"2016","journal-title":"Artificial Intelligence Concepts Methodologies Tools and Applications"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1145\/3065386"},{"key":"ref25","doi-asserted-by":"crossref","first-page":"21954","DOI":"10.1109\/ACCESS.2017.2762418","article-title":"A deep learning approach for intrusion detection using recurrent neural networks","volume":"5","author":"chuanlong","year":"2017","journal-title":"IEEE Access"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8600701\/08666014.pdf?arnumber=8666014","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,8,10]],"date-time":"2021-08-10T19:40:34Z","timestamp":1628624434000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8666014\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"references-count":37,"URL":"https:\/\/doi.org\/10.1109\/access.2019.2904620","relation":{},"ISSN":["2169-3536"],"issn-type":[{"type":"electronic","value":"2169-3536"}],"subject":[],"published":{"date-parts":[[2019]]}}}