{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,9]],"date-time":"2024-07-09T02:58:36Z","timestamp":1720493916796},"reference-count":42,"publisher":"Institute of Electrical and Electronics Engineers (IEEE)","license":[{"start":{"date-parts":[[2019,1,1]],"date-time":"2019-01-01T00:00:00Z","timestamp":1546300800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/ieeexplore.ieee.org\/Xplorehelp\/downloads\/license-information\/OAPA.html"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61702322","61461021","61802253","61603242","61802251","6177051715"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Collaborative Innovation Center for Economic Crime Investigation and Prevention Technology of Jiangxi Province","award":["JXJZXTCX-027","JXJZXTCX-030"]},{"name":"Chenguang Talented Program of Shanghai","award":["17CG59"]},{"DOI":"10.13039\/501100003399","name":"Science and Technology Commission of Shanghai Municipality","doi-asserted-by":"publisher","award":["18511101600"],"id":[{"id":"10.13039\/501100003399","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IEEE Access"],"published-print":{"date-parts":[[2019]]},"DOI":"10.1109\/access.2019.2892973","type":"journal-article","created":{"date-parts":[[2019,1,14]],"date-time":"2019-01-14T19:45:37Z","timestamp":1547495137000},"page":"16395-16405","source":"Crossref","is-referenced-by-count":6,"title":["An End-to-End Human Segmentation by Region Proposed Fully Convolutional Network"],"prefix":"10.1109","volume":"7","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-1946-576X","authenticated-orcid":false,"given":"Xiaoyan","family":"Jiang","sequence":"first","affiliation":[]},{"given":"Yongbin","family":"Gao","sequence":"additional","affiliation":[]},{"given":"Zhijun","family":"Fang","sequence":"additional","affiliation":[]},{"given":"Peng","family":"Wang","sequence":"additional","affiliation":[]},{"given":"Bo","family":"Huang","sequence":"additional","affiliation":[]}],"member":"263","reference":[{"key":"ref39","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2016.2572683"},{"key":"ref38","year":"2013","journal-title":"Baidu people segmentation dataset"},{"key":"ref33","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2016.2644615"},{"key":"ref32","doi-asserted-by":"publisher","DOI":"10.1109\/ICPR.2014.273"},{"key":"ref31","first-page":"234","article-title":"U-net: Convolutional networks for biomedical image segmentation","volume":"9351","author":"ronneberger","year":"2015","journal-title":"Proc Int Conf Med Image Comput Comput -Assist Intervent (MICCAI)"},{"key":"ref30","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2017.2699184"},{"key":"ref37","first-page":"1","article-title":"Rectified linear units improve restricted Boltzmann machines","author":"nair","year":"2010","journal-title":"Proc Int Conf Mach Learn (ICML)"},{"key":"ref36","first-page":"1929","article-title":"Dropout: A simple way to prevent neural networks from overfitting","volume":"15","author":"srivastava","year":"2014","journal-title":"J Mach Learn Res"},{"key":"ref35","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-005-6644-8"},{"key":"ref34","author":"garcia-garcia","year":"2017","journal-title":"A review on deep learning techniques applied to semantic segmentation"},{"key":"ref10","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2015.2437384"},{"key":"ref40","author":"everingham","year":"2012","journal-title":"The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results"},{"key":"ref11","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.169"},{"key":"ref12","first-page":"91","article-title":"Faster R-CNN: Towards real-time object detection with region proposal networks","author":"ren","year":"2015","journal-title":"Proc Neural Inf Process Syst (NIPS)"},{"key":"ref13","first-page":"379","article-title":"R-FCN: Object detection via region-based fully convolutional networks","author":"dai","year":"2016","journal-title":"Proc Neural Inf Process Syst (NIPS)"},{"key":"ref14","first-page":"7073","article-title":"R-FCN: Towards accurate region-based fully convolutional networks for object detection","author":"li","year":"2018","journal-title":"Proc Nat Conf Artif Intell (AAAI)"},{"key":"ref15","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.91"},{"key":"ref16","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2017.690"},{"key":"ref17","author":"redmon","year":"2018","journal-title":"YOLOv3 An Incremental Improvement"},{"key":"ref18","first-page":"21","article-title":"SSD: Single shot multibox detector","author":"liu","year":"2016","journal-title":"Proc Eur Conf Comput Vis (ECCV)"},{"key":"ref19","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.89"},{"key":"ref28","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2015.179"},{"key":"ref4","doi-asserted-by":"publisher","DOI":"10.1109\/ACPR.2015.7486548"},{"key":"ref27","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298959"},{"key":"ref3","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2016.350"},{"key":"ref6","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2014.81"},{"key":"ref29","author":"chen","year":"2016","journal-title":"Semantic image segmentation with deep convolutional nets and fully connected crfs"},{"key":"ref5","first-page":"297","article-title":"Simultaneous detection and segmentation","author":"hariharan","year":"2014","journal-title":"Proc Eur Conf Comput Vis (ECCV)"},{"key":"ref8","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2009.167"},{"key":"ref7","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2005.177"},{"key":"ref2","first-page":"1598","article-title":"IoT based home security through image processing algorithms","volume":"4","author":"mannapur","year":"2018","journal-title":"Internatioanl J Adv Res Ideas Innov Technol"},{"key":"ref9","doi-asserted-by":"crossref","first-page":"226","DOI":"10.3390\/s16020226","article-title":"Local tiled deep networks for recognition of vehicle make and model","volume":"16","author":"gao","year":"2016","journal-title":"SENSORS"},{"key":"ref1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2018.2812794"},{"key":"ref20","doi-asserted-by":"publisher","DOI":"10.1016\/j.engappai.2014.10.023"},{"key":"ref22","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-007-0109-1"},{"key":"ref21","doi-asserted-by":"publisher","DOI":"10.5244\/C.29.41"},{"key":"ref42","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2017.322"},{"key":"ref24","doi-asserted-by":"publisher","DOI":"10.1109\/TCSVT.2014.2357093"},{"key":"ref41","doi-asserted-by":"publisher","DOI":"10.1016\/j.engappai.2012.11.011"},{"key":"ref23","doi-asserted-by":"publisher","DOI":"10.1109\/ICCV.2009.5459175"},{"key":"ref26","doi-asserted-by":"publisher","DOI":"10.1109\/CVPR.2015.7298965"},{"key":"ref25","first-page":"2368","article-title":"Nonparametric scene parsing via label transfer","volume":"33","author":"liu","year":"2011","journal-title":"Proc IEEE Conf Comput Vis Pattern Recognit (CVPR)"}],"container-title":["IEEE Access"],"original-title":[],"link":[{"URL":"http:\/\/xplorestaging.ieee.org\/ielx7\/6287639\/8600701\/08611439.pdf?arnumber=8611439","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,1,27]],"date-time":"2022-01-27T08:00:30Z","timestamp":1643270430000},"score":1,"resource":{"primary":{"URL":"https:\/\/ieeexplore.ieee.org\/document\/8611439\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019]]},"references-count":42,"URL":"https:\/\/doi.org\/10.1109\/access.2019.2892973","relation":{},"ISSN":["2169-3536"],"issn-type":[{"value":"2169-3536","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019]]}}}