{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,2,21]],"date-time":"2025-02-21T09:27:28Z","timestamp":1740130048754,"version":"3.37.3"},"reference-count":102,"publisher":"Oxford University Press (OUP)","issue":"D1","license":[{"start":{"date-parts":[[2020,10,29]],"date-time":"2020-10-29T00:00:00Z","timestamp":1603929600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc\/4.0\/"}],"funder":[{"DOI":"10.13039\/100000001","name":"National Science Foundation","doi-asserted-by":"publisher","award":["1617369","1661391"],"id":[{"id":"10.13039\/100000001","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000002","name":"National Institutes of Health","doi-asserted-by":"publisher","award":["R01 GM127701"],"id":[{"id":"10.13039\/100000002","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Robert J. Mattauch Endowment"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,1,8]]},"abstract":"Abstract<\/jats:title>We present DescribePROT, the database of predicted amino acid-level descriptors of structure and function of proteins. DescribePROT delivers a comprehensive collection of 13 complementary descriptors predicted using 10 popular and accurate algorithms for 83 complete proteomes that cover key model organisms. The current version includes 7.8 billion predictions for close to 600 million amino acids in 1.4 million proteins. The descriptors encompass sequence conservation, position specific scoring matrix, secondary structure, solvent accessibility, intrinsic disorder, disordered linkers, signal peptides, MoRFs and interactions with proteins, DNA and RNAs. Users can search DescribePROT by the amino acid sequence and the UniProt accession number and entry name. The pre-computed results are made available instantaneously. The predictions can be accesses via an interactive graphical interface that allows simultaneous analysis of multiple descriptors and can be also downloaded in structured formats at the protein, proteome and whole database scale. The putative annotations included by DescriPROT are useful for a broad range of studies, including: investigations of protein function, applied projects focusing on therapeutics and diseases, and in the development of predictors for other protein sequence descriptors. Future releases will expand the coverage of DescribePROT. DescribePROT can be accessed at http:\/\/biomine.cs.vcu.edu\/servers\/DESCRIBEPROT\/.<\/jats:p>","DOI":"10.1093\/nar\/gkaa931","type":"journal-article","created":{"date-parts":[[2020,10,6]],"date-time":"2020-10-06T03:29:54Z","timestamp":1601954994000},"page":"D298-D308","source":"Crossref","is-referenced-by-count":58,"title":["DescribePROT: database of amino acid-level protein structure and function predictions"],"prefix":"10.1093","volume":"49","author":[{"given":"Bi","family":"Zhao","sequence":"first","affiliation":[{"name":"Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA"}]},{"given":"Akila","family":"Katuwawala","sequence":"additional","affiliation":[{"name":"Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA"}]},{"given":"Christopher J","family":"Oldfield","sequence":"additional","affiliation":[{"name":"Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA"}]},{"given":"A Keith","family":"Dunker","sequence":"additional","affiliation":[{"name":"Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA"}]},{"given":"Eshel","family":"Faraggi","sequence":"additional","affiliation":[{"name":"Battelle Center for Mathematical Medicine at the Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA"}]},{"given":"J\u00f6rg","family":"Gsponer","sequence":"additional","affiliation":[{"name":"Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada"}]},{"given":"Andrzej","family":"Kloczkowski","sequence":"additional","affiliation":[{"name":"Battelle Center for Mathematical Medicine at the Nationwide Children's Hospital, and Department of Pediatrics, The Ohio State University, Columbus, OH, USA"}]},{"given":"Nawar","family":"Malhis","sequence":"additional","affiliation":[{"name":"Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada"}]},{"given":"Milot","family":"Mirdita","sequence":"additional","affiliation":[{"name":"Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, G\u00f6ttingen, Germany"}]},{"given":"Zoran","family":"Obradovic","sequence":"additional","affiliation":[{"name":"Department of Computer and Information Sciences, Temple University, Philadelphia, PA, USA"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-9642-8244","authenticated-orcid":false,"given":"Johannes","family":"S\u00f6ding","sequence":"additional","affiliation":[{"name":"Quantitative and Computational Biology, Max Planck Institute for Biophysical Chemistry, G\u00f6ttingen, Germany"}]},{"given":"Martin","family":"Steinegger","sequence":"additional","affiliation":[{"name":"School of Biological Sciences and Institute of Molecular Biology & Genetics, Seoul National University, Seoul, Republic of Korea"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9958-5699","authenticated-orcid":false,"given":"Yaoqi","family":"Zhou","sequence":"additional","affiliation":[{"name":"Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-7749-0314","authenticated-orcid":false,"given":"Lukasz","family":"Kurgan","sequence":"additional","affiliation":[{"name":"Department of Computer Science, Virginia Commonwealth University, Richmond, VA, USA"}]}],"member":"286","published-online":{"date-parts":[[2020,10,29]]},"reference":[{"key":"2021010313112518200_B1","doi-asserted-by":"crossref","first-page":"D506","DOI":"10.1093\/nar\/gky1049","article-title":"UniProt: a worldwide hub of protein knowledge","volume":"47","author":"UniProt, C.","year":"2019","journal-title":"Nucleic Acids Res."},{"key":"2021010313112518200_B2","doi-asserted-by":"crossref","first-page":"D520","DOI":"10.1093\/nar\/gky949","article-title":"Protein Data Bank: the single global archive for 3D macromolecular structure data","volume":"47","author":"ww, P.D.B.c.","year":"2019","journal-title":"Nucleic Acids Res."},{"key":"2021010313112518200_B3","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1007\/978-1-4939-3167-5_2","article-title":"UniProtKB\/Swiss-Prot, the manually annotated section of the UniProt KnowledgeBase: how to use the entry view","volume":"1374","author":"Boutet","year":"2016","journal-title":"Methods Mol. Biol."},{"key":"2021010313112518200_B4","doi-asserted-by":"crossref","first-page":"559","DOI":"10.1002\/0471721204.ch28","article-title":"Prediction in 1D: secondary structure, membrane helices, and accessibility","volume":"44","author":"Rost","year":"2003","journal-title":"Methods Biochem. Anal."},{"key":"2021010313112518200_B5","doi-asserted-by":"crossref","first-page":"470","DOI":"10.2174\/138920311796957711","article-title":"Structural protein descriptors in 1-dimension and their sequence-based predictions","volume":"12","author":"Kurgan","year":"2011","journal-title":"Curr. Protein Pept. Sci."},{"key":"2021010313112518200_B6","doi-asserted-by":"crossref","first-page":"26303","DOI":"10.3390\/ijms161125952","article-title":"Computational prediction of RNA-binding proteins and binding sites","volume":"16","author":"Si","year":"2015","journal-title":"Int. J. Mol. Sci."},{"key":"2021010313112518200_B7","doi-asserted-by":"crossref","first-page":"5194","DOI":"10.3390\/ijms16035194","article-title":"An overview of the prediction of protein DNA-binding sites","volume":"16","author":"Si","year":"2015","journal-title":"Int. J. Mol. Sci."},{"key":"2021010313112518200_B8","doi-asserted-by":"crossref","first-page":"2417","DOI":"10.1039\/c3mb70167k","article-title":"Prediction of RNA binding proteins comes of age from low resolution to high resolution","volume":"9","author":"Zhao","year":"2013","journal-title":"Mol. Biosyst."},{"key":"2021010313112518200_B9","doi-asserted-by":"crossref","first-page":"680","DOI":"10.1002\/wcms.45","article-title":"Prediction of protein binding sites and hot spots","volume":"1","author":"Fernandez-Recio","year":"2011","journal-title":"Wires Comput. Mol. Sci."},{"key":"2021010313112518200_B10","doi-asserted-by":"crossref","first-page":"73","DOI":"10.1007\/978-1-4939-9161-7_4","article-title":"Computational prediction of secondary and supersecondary structures from protein sequences","volume":"1958","author":"Oldfield","year":"2019","journal-title":"Methods Mol. Biol."},{"key":"2021010313112518200_B11","doi-asserted-by":"crossref","first-page":"821","DOI":"10.1093\/bib\/bbx022","article-title":"Review and comparative assessment of sequence-based predictors of protein-binding residues","volume":"19","author":"Zhang","year":"2018","journal-title":"Brief. Bioinform."},{"key":"2021010313112518200_B12","doi-asserted-by":"crossref","first-page":"29829","DOI":"10.3390\/ijms161226202","article-title":"Proteins and their interacting partners: an introduction to protein-ligand binding site prediction methods","volume":"16","author":"Roche","year":"2015","journal-title":"Int. J. Mol. Sci."},{"key":"2021010313112518200_B13","doi-asserted-by":"crossref","first-page":"1025","DOI":"10.1093\/bib\/bbv009","article-title":"Predicting protein interface residues using easily accessible on-line resources","volume":"16","author":"Maheshwari","year":"2015","journal-title":"Brief. Bioinform."},{"key":"2021010313112518200_B14","doi-asserted-by":"crossref","first-page":"929","DOI":"10.1038\/cr.2009.87","article-title":"Predicting intrinsic disorder in proteins: an overview","volume":"19","author":"He","year":"2009","journal-title":"Cell Res."},{"key":"2021010313112518200_B15","doi-asserted-by":"crossref","first-page":"261","DOI":"10.1016\/j.jsb.2011.10.001","article-title":"Computational methods for prediction of protein-RNA interactions","volume":"179","author":"Puton","year":"2012","journal-title":"J. Struct. Biol."},{"key":"2021010313112518200_B16","doi-asserted-by":"crossref","first-page":"3069","DOI":"10.1007\/s00018-017-2555-4","article-title":"Comprehensive review of methods for prediction of intrinsic disorder and its molecular functions","volume":"74","author":"Meng","year":"2017","journal-title":"Cell. Mol. Life Sci."},{"key":"2021010313112518200_B17","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1016\/j.jmgm.2017.07.015","article-title":"Protein secondary structure prediction: a survey of the state of the art","volume":"76","author":"Jiang","year":"2017","journal-title":"J. Mol. Graph. Model."},{"key":"2021010313112518200_B18","doi-asserted-by":"crossref","first-page":"454","DOI":"10.1016\/j.csbj.2019.03.013","article-title":"Computational prediction of MoRFs, short disorder-to-order transitioning protein binding regions","volume":"17","author":"Katuwawala","year":"2019","journal-title":"Comput Struct Biotechnol J."},{"key":"2021010313112518200_B19","doi-asserted-by":"crossref","first-page":"265","DOI":"10.2174\/1573406411666141230095427","article-title":"Advances in protein contact map prediction based on machine learning","volume":"11","author":"Xie","year":"2015","journal-title":"Med. Chem."},{"key":"2021010313112518200_B20","doi-asserted-by":"crossref","first-page":"e1259708","DOI":"10.1080\/21690707.2016.1259708","article-title":"How disordered is my protein and what is its disorder for? A guide through the \u201cDark Side\u201d of the protein universe","volume":"4","author":"Lieutaud","year":"2016","journal-title":"Intrinsic. Disord. Proteins"},{"key":"2021010313112518200_B21","doi-asserted-by":"crossref","first-page":"2.16.11","DOI":"10.1002\/cpps.28","article-title":"Computational prediction of intrinsic disorder in proteins","volume":"88","author":"Meng","year":"2017","journal-title":"Curr. Protoc. Protein Sci."},{"key":"2021010313112518200_B22","doi-asserted-by":"crossref","first-page":"159","DOI":"10.2174\/1570163815666180227162157","article-title":"A systematic review on popularity, application and characteristics of protein secondary structure prediction tools","volume":"16","author":"Kashani-Amin","year":"2018","journal-title":"Curr. Drug Discov. Technol."},{"key":"2021010313112518200_B23","doi-asserted-by":"crossref","first-page":"2.3.1","DOI":"10.1002\/cpps.19","article-title":"Computational prediction of protein secondary structure from sequence","volume":"86","author":"Meng","year":"2016","journal-title":"Curr. Protoc. Protein Sci."},{"key":"2021010313112518200_B24","doi-asserted-by":"crossref","first-page":"1250","DOI":"10.1093\/bib\/bbx168","article-title":"Comprehensive review and empirical analysis of hallmarks of DNA-, RNA- and protein-binding residues in protein chains","volume":"20","author":"Zhang","year":"2019","journal-title":"Brief. Bioinform."},{"key":"2021010313112518200_B25","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1002\/prot.24391","article-title":"Assessment of protein disorder region predictions in CASP10","volume":"82","author":"Monastyrskyy","year":"2014","journal-title":"Proteins"},{"key":"2021010313112518200_B26","doi-asserted-by":"crossref","first-page":"201","DOI":"10.1093\/bioinformatics\/btu625","article-title":"Comprehensive large-scale assessment of intrinsic protein disorder","volume":"31","author":"Walsh","year":"2015","journal-title":"Bioinformatics"},{"key":"2021010313112518200_B27","doi-asserted-by":"crossref","first-page":"1509","DOI":"10.1093\/bib\/bbz100","article-title":"Accuracy of protein-level disorder predictions","volume":"21","author":"Katuwawala","year":"2020","journal-title":"Brief. Bioinform."},{"key":"2021010313112518200_B28","doi-asserted-by":"crossref","first-page":"672","DOI":"10.1093\/bib\/bbq088","article-title":"Critical assessment of high-throughput standalone methods for secondary structure prediction","volume":"12","author":"Zhang","year":"2011","journal-title":"Brief. Bioinform."},{"key":"2021010313112518200_B29","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1002\/prot.25407","article-title":"Assessment of contact predictions in CASP12: Co-evolution and deep learning coming of age","volume":"86","author":"Schaarschmidt","year":"2018","journal-title":"Proteins"},{"key":"2021010313112518200_B30","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1093\/bib\/bbv023","article-title":"A comprehensive comparative review of sequence-based predictors of DNA- and RNA-binding residues","volume":"17","author":"Yan","year":"2016","journal-title":"Brief. Bioinform."},{"key":"2021010313112518200_B31","doi-asserted-by":"crossref","first-page":"e1004639","DOI":"10.1371\/journal.pcbi.1004639","article-title":"A large-scale assessment of nucleic acids binding site prediction programs","volume":"11","author":"Miao","year":"2015","journal-title":"PLoS Comput. Biol."},{"key":"2021010313112518200_B32","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1093\/protein\/10.1.1","article-title":"Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites","volume":"10","author":"Nielsen","year":"1997","journal-title":"Protein Eng."},{"key":"2021010313112518200_B33","doi-asserted-by":"crossref","first-page":"783","DOI":"10.1016\/j.jmb.2004.05.028","article-title":"Improved prediction of signal peptides: SignalP 3.0","volume":"340","author":"Bendtsen","year":"2004","journal-title":"J. Mol. Biol."},{"key":"2021010313112518200_B34","doi-asserted-by":"crossref","first-page":"420","DOI":"10.1038\/s41587-019-0036-z","article-title":"SignalP 5.0 improves signal peptide predictions using deep neural networks","volume":"37","author":"Almagro\u00a0Armenteros","year":"2019","journal-title":"Nat. Biotechnol."},{"key":"2021010313112518200_B35","doi-asserted-by":"crossref","first-page":"785","DOI":"10.1038\/nmeth.1701","article-title":"SignalP 4.0: discriminating signal peptides from transmembrane regions","volume":"8","author":"Petersen","year":"2011","journal-title":"Nat. Methods"},{"key":"2021010313112518200_B36","doi-asserted-by":"crossref","first-page":"404","DOI":"10.1093\/bioinformatics\/16.4.404","article-title":"The PSIPRED protein structure prediction server","volume":"16","author":"McGuffin","year":"2000","journal-title":"Bioinformatics"},{"key":"2021010313112518200_B37","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1006\/jmbi.1999.3091","article-title":"Protein secondary structure prediction based on position-specific scoring matrices1","volume":"292","author":"Jones","year":"1999","journal-title":"J. Mol. Biol."},{"key":"2021010313112518200_B38","doi-asserted-by":"crossref","first-page":"3433","DOI":"10.1093\/bioinformatics\/bti541","article-title":"IUPred: web server for the prediction of intrinsically unstructured regions of proteins based on estimated energy content","volume":"21","author":"Doszt\u00e1nyi","year":"2005","journal-title":"Bioinformatics"},{"key":"2021010313112518200_B39","doi-asserted-by":"crossref","first-page":"827","DOI":"10.1016\/j.jmb.2005.01.071","article-title":"The pairwise energy content estimated from amino acid composition discriminates between folded and intrinsically unstructured proteins","volume":"347","author":"Doszt\u00e1nyi","year":"2005","journal-title":"J. Mol. Biol."},{"key":"2021010313112518200_B40","doi-asserted-by":"crossref","first-page":"W329","DOI":"10.1093\/nar\/gky384","article-title":"IUPred2A: context-dependent prediction of protein disorder as a function of redox state and protein binding","volume":"46","author":"Meszaros","year":"2018","journal-title":"Nucleic Acids Res."},{"key":"2021010313112518200_B41","doi-asserted-by":"crossref","first-page":"W402","DOI":"10.1093\/nar\/gkz297","article-title":"The PSIPRED Protein Analysis Workbench: 20 years on","volume":"47","author":"Buchan","year":"2019","journal-title":"Nucleic Acids Res."},{"key":"2021010313112518200_B42","doi-asserted-by":"crossref","first-page":"W72","DOI":"10.1093\/nar\/gki396","article-title":"SCRATCH: a protein structure and structural feature prediction server","volume":"33","author":"Cheng","year":"2005","journal-title":"Nucleic Acids Res."},{"key":"2021010313112518200_B43","doi-asserted-by":"crossref","first-page":"W337","DOI":"10.1093\/nar\/gku366","article-title":"PredictProtein\u2014an open resource for online prediction of protein structural and functional features","volume":"42","author":"Yachdav","year":"2014","journal-title":"Nucleic Acids Res."},{"key":"2021010313112518200_B44","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1186\/1471-2105-13-65","article-title":"The MULTICOM toolbox for protein structure prediction","volume":"13","author":"Cheng","year":"2012","journal-title":"BMC Bioinformatics"},{"key":"2021010313112518200_B45","doi-asserted-by":"crossref","first-page":"3379","DOI":"10.1016\/j.jmb.2019.12.030","article-title":"DEPICTER: intrinsic disorder and disorder function prediction server","volume":"432","author":"Barik","year":"2020","journal-title":"J. Mol. Biol."},{"key":"2021010313112518200_B46","doi-asserted-by":"crossref","first-page":"D508","DOI":"10.1093\/nar\/gks1226","article-title":"D(2)P(2): database of disordered protein predictions","volume":"41","author":"Oates","year":"2013","journal-title":"Nucleic Acids Res."},{"key":"2021010313112518200_B47","doi-asserted-by":"crossref","first-page":"D471","DOI":"10.1093\/nar\/gkx1071","article-title":"MobiDB 3.0: more annotations for intrinsic disorder, conformational diversity and interactions in proteins","volume":"46","author":"Piovesan","year":"2018","journal-title":"Nucleic Acids Res."},{"key":"2021010313112518200_B48","doi-asserted-by":"crossref","first-page":"2080","DOI":"10.1093\/bioinformatics\/bts327","article-title":"MobiDB: a comprehensive database of intrinsic protein disorder annotations","volume":"28","author":"Di\u00a0Domenico","year":"2012","journal-title":"Bioinformatics"},{"key":"2021010313112518200_B49","doi-asserted-by":"crossref","first-page":"3170","DOI":"10.1002\/prot.24682","article-title":"Accurate single-sequence prediction of solvent accessible surface area using local and global features","volume":"82","author":"Faraggi","year":"2014","journal-title":"Proteins"},{"key":"2021010313112518200_B50","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1007\/978-1-4939-6406-2_10","article-title":"Fast and accurate accessible surface area prediction without a sequence profile","volume":"1484","author":"Faraggi","year":"2017","journal-title":"Methods Mol. Biol."},{"key":"2021010313112518200_B51","doi-asserted-by":"crossref","first-page":"i341","DOI":"10.1093\/bioinformatics\/btw280","article-title":"DFLpred: High-throughput prediction of disordered flexible linker regions in protein sequences","volume":"32","author":"Meng","year":"2016","journal-title":"Bioinformatics"},{"key":"2021010313112518200_B52","doi-asserted-by":"crossref","first-page":"e121","DOI":"10.1093\/nar\/gkv585","article-title":"High-throughput prediction of RNA, DNA and protein binding regions mediated by intrinsic disorder","volume":"43","author":"Peng","year":"2015","journal-title":"Nucleic Acids Res."},{"key":"2021010313112518200_B53","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1007\/978-1-4939-6406-2_14","article-title":"Prediction of disordered RNA, DNA, and protein binding regions using DisoRDPbind","volume":"1484","author":"Peng","year":"2017","journal-title":"Methods Mol. Biol."},{"key":"2021010313112518200_B54","doi-asserted-by":"crossref","first-page":"225","DOI":"10.1007\/978-1-0716-0231-7_14","article-title":"Disordered RNA-binding region prediction with DisoRDPbind","volume":"2106","author":"Oldfield","year":"2020","journal-title":"Methods Mol. Biol."},{"key":"2021010313112518200_B55","first-page":"e84","article-title":"DRNApred, fast sequence-based method that accurately predicts and discriminates DNA- and RNA-binding residues","volume":"45","author":"Yan","year":"2017","journal-title":"Nucleic Acids Res."},{"key":"2021010313112518200_B56","doi-asserted-by":"crossref","first-page":"2856","DOI":"10.1093\/bioinformatics\/bty1057","article-title":"MMseqs2 desktop and local web server app for fast, interactive sequence searches","volume":"35","author":"Mirdita","year":"2019","journal-title":"Bioinformatics"},{"key":"2021010313112518200_B57","doi-asserted-by":"crossref","first-page":"1026","DOI":"10.1038\/nbt.3988","article-title":"MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets","volume":"35","author":"Steinegger","year":"2017","journal-title":"Nat. Biotechnol."},{"key":"2021010313112518200_B58","doi-asserted-by":"crossref","first-page":"W488","DOI":"10.1093\/nar\/gkw409","article-title":"MoRFchibi SYSTEM: software tools for the identification of MoRFs in protein sequences","volume":"44","author":"Malhis","year":"2016","journal-title":"Nucleic Acids Res."},{"key":"2021010313112518200_B59","doi-asserted-by":"crossref","first-page":"195","DOI":"10.1006\/jmbi.1999.3091","article-title":"Protein secondary structure prediction based on position-specific scoring matrices","volume":"292","author":"Jones","year":"1999","journal-title":"J. Mol. Biol."},{"key":"2021010313112518200_B60","doi-asserted-by":"crossref","first-page":"i343","DOI":"10.1093\/bioinformatics\/btz324","article-title":"SCRIBER: accurate and partner type-specific prediction of protein-binding residues from proteins sequences","volume":"35","author":"Zhang","year":"2019","journal-title":"Bioinformatics"},{"key":"2021010313112518200_B61","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1007\/978-1-4939-7015-5_6","article-title":"Predicting secretory proteins with SignalP","volume":"1611","author":"Nielsen","year":"2017","journal-title":"Methods Mol. Biol."},{"key":"2021010313112518200_B62","doi-asserted-by":"crossref","first-page":"176","DOI":"10.1002\/prot.20735","article-title":"Exploiting heterogeneous sequence properties improves prediction of protein disorder","volume":"61","author":"Obradovic","year":"2005","journal-title":"Proteins"},{"key":"2021010313112518200_B63","doi-asserted-by":"crossref","first-page":"208","DOI":"10.1186\/1471-2105-7-208","article-title":"Length-dependent prediction of protein intrinsic disorder","volume":"7","author":"Peng","year":"2006","journal-title":"BMC Bioinformatics"},{"key":"2021010313112518200_B64","doi-asserted-by":"crossref","first-page":"204","DOI":"10.1006\/jsbi.2001.4336","article-title":"Review: protein secondary structure prediction continues to rise","volume":"134","author":"Rost","year":"2001","journal-title":"J. Struct. Biol."},{"key":"2021010313112518200_B65","doi-asserted-by":"crossref","first-page":"e80635","DOI":"10.1371\/journal.pone.0080635","article-title":"Maximum allowed solvent accessibilites of residues in proteins","volume":"8","author":"Tien","year":"2013","journal-title":"PLoS One"},{"key":"2021010313112518200_B66","doi-asserted-by":"crossref","first-page":"557","DOI":"10.1002\/prot.10602","article-title":"Prediction of protein relative solvent accessibility with support vector machines and long-range interaction 3D local descriptor","volume":"54","author":"Kim","year":"2004","journal-title":"Proteins Struct. Funct. Bioinf."},{"key":"2021010313112518200_B67","doi-asserted-by":"crossref","first-page":"142","DOI":"10.1002\/prot.10069","article-title":"Prediction of coordination number and relative solvent accessibility in proteins","volume":"47","author":"Pollastri","year":"2002","journal-title":"Proteins"},{"key":"2021010313112518200_B68","doi-asserted-by":"crossref","first-page":"613","DOI":"10.1093\/bioinformatics\/btm626","article-title":"Prediction of protein functional residues from sequence by probability density estimation","volume":"24","author":"Fischer","year":"2008","journal-title":"Bioinformatics"},{"key":"2021010313112518200_B69","doi-asserted-by":"crossref","first-page":"385","DOI":"10.1186\/1471-2105-7-385","article-title":"Incorporating background frequency improves entropy-based residue conservation measures","volume":"7","author":"Wang","year":"2006","journal-title":"BMC Bioinformatics"},{"key":"2021010313112518200_B70","doi-asserted-by":"crossref","first-page":"274","DOI":"10.1038\/nbt0308-274","article-title":"BLOSUM62 miscalculations improve search performance","volume":"26","author":"Styczynski","year":"2008","journal-title":"Nat. Biotechnol."},{"key":"2021010313112518200_B71","doi-asserted-by":"crossref","first-page":"6589","DOI":"10.1021\/cr400525m","article-title":"Classification of intrinsically disordered regions and proteins","volume":"114","author":"van\u00a0der\u00a0Lee","year":"2014","journal-title":"Chem. Rev."},{"key":"2021010313112518200_B72","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/B978-0-12-816348-1.00001-6","article-title":"Introduction to intrinsically disordered proteins and regions","volume-title":"Intrinsically Disordered Proteins","author":"Oldfield","year":"2019"},{"key":"2021010313112518200_B73","doi-asserted-by":"crossref","first-page":"17883","DOI":"10.1021\/acsomega.9b03927","article-title":"Identification of intrinsic disorder in complexes from the Protein Data Bank","volume":"5","author":"Zhou","year":"2020","journal-title":"ACS Omega"},{"key":"2021010313112518200_B74","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1002\/prot.20734","article-title":"Assessment of disorder predictions in CASP6","volume":"61","author":"Jin","year":"2005","journal-title":"Proteins"},{"key":"2021010313112518200_B75","doi-asserted-by":"crossref","first-page":"6","DOI":"10.2174\/138920312799277938","article-title":"Comprehensive comparative assessment of in-silico predictors of disordered regions","volume":"13","author":"Peng","year":"2012","journal-title":"Curr. Protein Pept. Sci."},{"key":"2021010313112518200_B76","doi-asserted-by":"crossref","first-page":"6573","DOI":"10.1021\/bi012159+","article-title":"Intrinsic disorder and protein function","volume":"41","author":"Dunker","year":"2002","journal-title":"Biochemistry"},{"key":"2021010313112518200_B77","doi-asserted-by":"crossref","DOI":"10.1093\/bioinformatics\/btaa573","article-title":"Prediction of protein-binding residues: dichotomy of sequence-based methods developed using structured complexes vs. disordered proteins","author":"Zhang","year":"2020","journal-title":"Bioinformatics"},{"key":"2021010313112518200_B78","doi-asserted-by":"crossref","first-page":"e1800064","DOI":"10.1002\/pmic.201800064","article-title":"In silico prediction and validation of novel RNA binding proteins and residues in the human proteome","volume":"18","author":"Chowdhury","year":"2018","journal-title":"Proteomics"},{"key":"2021010313112518200_B79","doi-asserted-by":"crossref","first-page":"930","DOI":"10.1093\/bioinformatics\/bty756","article-title":"Improving the prediction of protein-nucleic acids binding residues via multiple sequence profiles and the consensus of complementary methods","volume":"35","author":"Su","year":"2019","journal-title":"Bioinformatics"},{"key":"2021010313112518200_B80","doi-asserted-by":"crossref","first-page":"1043","DOI":"10.1016\/j.jmb.2006.07.087","article-title":"Analysis of molecular recognition features (MoRFs)","volume":"362","author":"Mohan","year":"2006","journal-title":"J. Mol. Biol."},{"key":"2021010313112518200_B81","doi-asserted-by":"crossref","first-page":"697","DOI":"10.1039\/C5MB00640F","article-title":"Molecular recognition features (MoRFs) in three domains of life","volume":"12","author":"Yan","year":"2016","journal-title":"Mol. Biosyst."},{"key":"2021010313112518200_B82","doi-asserted-by":"crossref","first-page":"421","DOI":"10.1186\/1471-2105-10-421","article-title":"BLAST+: architecture and applications","volume":"10","author":"Camacho","year":"2009","journal-title":"BMC Bioinformatics"},{"key":"2021010313112518200_B83","doi-asserted-by":"crossref","first-page":"e71","DOI":"10.1002\/cpps.71","article-title":"Sequence similarity searching","volume":"95","author":"Hu","year":"2019","journal-title":"Curr. Protoc. Protein Sci."},{"key":"2021010313112518200_B84","doi-asserted-by":"crossref","first-page":"135","DOI":"10.3390\/cancers10050135","article-title":"The guardian of the genome revisited: p53 downregulates genes required for telomere maintenance, DNA repair, and centromere structure","volume":"10","author":"Toufektchan","year":"2018","journal-title":"Cancers (Basel)"},{"key":"2021010313112518200_B85","doi-asserted-by":"crossref","first-page":"4766","DOI":"10.1073\/pnas.87.12.4766","article-title":"Human P53 is phosphorylated by P60-Cdc2 and Cyclin-B-Cdc2","volume":"87","author":"Bischoff","year":"1990","journal-title":"Proc. Natl. Acad. Sci. U.S.A."},{"key":"2021010313112518200_B86","doi-asserted-by":"crossref","first-page":"6591","DOI":"10.1073\/pnas.0811023106","article-title":"Cooperative regulation of p53 by modulation of ternary complex formation with CBP\/p300 and HDM2","volume":"106","author":"Ferreon","year":"2009","journal-title":"Proc. Natl. Acad. Sci. U.S.A."},{"key":"2021010313112518200_B87","doi-asserted-by":"crossref","first-page":"5762","DOI":"10.1073\/pnas.0801353105","article-title":"Structure of tumor suppressor p53 and its intrinsically disordered N-terminal transactivation domain","volume":"105","author":"Wells","year":"2008","journal-title":"Proc. Natl. Acad. Sci. U.S.A."},{"key":"2021010313112518200_B88","doi-asserted-by":"crossref","first-page":"S1","DOI":"10.1186\/1471-2164-9-S1-S1","article-title":"Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners","volume":"9","author":"Oldfield","year":"2008","journal-title":"BMC Genomics"},{"key":"2021010313112518200_B89","doi-asserted-by":"crossref","first-page":"202","DOI":"10.1016\/j.str.2008.12.009","article-title":"Structural basis for p300 Taz2-p53 TAD1 binding and modulation by phosphorylation","volume":"17","author":"Feng","year":"2009","journal-title":"Structure"},{"key":"2021010313112518200_B90","doi-asserted-by":"crossref","first-page":"523","DOI":"10.1016\/S1097-2765(02)00628-7","article-title":"Structure of a Sir2 enzyme bound to an acetylated p53 peptide","volume":"10","author":"Avalos","year":"2002","journal-title":"Mol. Cell"},{"key":"2021010313112518200_B91","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1016\/S1097-2765(03)00528-8","article-title":"Structural mechanism of the bromodomain of the coactivator CBP in p53 transcriptional activation","volume":"13","author":"Mujtaba","year":"2004","journal-title":"Mol. Cell"},{"key":"2021010313112518200_B92","doi-asserted-by":"crossref","first-page":"1361","DOI":"10.1101\/gr.103945.109","article-title":"p53 binds preferentially to genomic regions with high DNA-encoded nucleosome occupancy","volume":"20","author":"Lidor\u00a0Nili","year":"2010","journal-title":"Genome Res."},{"key":"2021010313112518200_B93","doi-asserted-by":"crossref","first-page":"3342","DOI":"10.1093\/emboj\/17.12.3342","article-title":"How p53 binds DNA as a tetramer","volume":"17","author":"McLure","year":"1998","journal-title":"EMBO J."},{"key":"2021010313112518200_B94","doi-asserted-by":"crossref","first-page":"1874","DOI":"10.3390\/ijms17111874","article-title":"p53 proteoforms and intrinsic disorder: an Illustration of the protein structure-function continuum concept","volume":"17","author":"Uversky","year":"2016","journal-title":"Int. J. Mol. Sci."},{"key":"2021010313112518200_B95","doi-asserted-by":"crossref","first-page":"233","DOI":"10.1038\/35106009","article-title":"Assessing TP53 status in human tumours to evaluate clinical outcome","volume":"1","author":"Soussi","year":"2001","journal-title":"Nat. Rev. Cancer"},{"key":"2021010313112518200_B96","doi-asserted-by":"crossref","first-page":"725","DOI":"10.1016\/j.bbapap.2013.01.012","article-title":"Intrinsically disordered regions of p53 family are highly diversified in evolution","volume":"1834","author":"Xue","year":"2013","journal-title":"Biochim. Biophys. Acta"},{"key":"2021010313112518200_B97","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1007\/s00018-014-1661-9","article-title":"Exceptionally abundant exceptions: comprehensive characterization of intrinsic disorder in all domains of life","volume":"72","author":"Peng","year":"2015","journal-title":"Cell. Mol. Life Sci."},{"key":"2021010313112518200_B98","doi-asserted-by":"crossref","first-page":"e1065029","DOI":"10.1080\/21690707.2015.1065029","article-title":"Paradoxes and wonders of intrinsic disorder: Prevalence of exceptionality","volume":"3","author":"Uversky","year":"2015","journal-title":"Intrinsic. Disord Proteins"},{"key":"2021010313112518200_B99","doi-asserted-by":"crossref","first-page":"16992","DOI":"10.1073\/pnas.1914866117","article-title":"A partially disordered region connects gene repression and activation functions of EZH2","volume":"117","author":"Jiao","year":"2020","journal-title":"Proc. Natl. Acad. Sci. U.S.A."},{"key":"2021010313112518200_B100","doi-asserted-by":"crossref","DOI":"10.1007\/s00018-020-03603-x","article-title":"Understanding COVID-19 via comparative analysis of dark proteomes of SARS-CoV-2, human SARS and bat SARS-like coronaviruses","author":"Giri","year":"2020","journal-title":"Cell. Mol. Life Sci."},{"key":"2021010313112518200_B101","doi-asserted-by":"crossref","first-page":"1057","DOI":"10.1093\/bioinformatics\/btz721","article-title":"DeepCleave: a deep learning predictor for caspase and matrix metalloprotease substrates and cleavage sites","volume":"36","author":"Li","year":"2020","journal-title":"Bioinformatics"},{"key":"2021010313112518200_B102","first-page":"D269","article-title":"DisProt: intrinsic protein disorder annotation in 2020","volume":"48","author":"Hatos","year":"2020","journal-title":"Nucleic Acids Res."}],"container-title":["Nucleic Acids Research"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/academic.oup.com\/nar\/article-pdf\/49\/D1\/D298\/35364666\/gkaa931.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"syndication"},{"URL":"http:\/\/academic.oup.com\/nar\/article-pdf\/49\/D1\/D298\/35364666\/gkaa931.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,10,9]],"date-time":"2023-10-09T02:58:35Z","timestamp":1696820315000},"score":1,"resource":{"primary":{"URL":"https:\/\/academic.oup.com\/nar\/article\/49\/D1\/D298\/5943193"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10,29]]},"references-count":102,"journal-issue":{"issue":"D1","published-online":{"date-parts":[[2020,10,29]]},"published-print":{"date-parts":[[2021,1,8]]}},"URL":"https:\/\/doi.org\/10.1093\/nar\/gkaa931","relation":{},"ISSN":["0305-1048","1362-4962"],"issn-type":[{"type":"print","value":"0305-1048"},{"type":"electronic","value":"1362-4962"}],"subject":[],"published-other":{"date-parts":[[2021,1,8]]},"published":{"date-parts":[[2020,10,29]]}}}