{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T17:52:09Z","timestamp":1726336329411},"reference-count":96,"publisher":"Oxford University Press (OUP)","issue":"D1","license":[{"start":{"date-parts":[[2020,10,13]],"date-time":"2020-10-13T00:00:00Z","timestamp":1602547200000},"content-version":"vor","delay-in-days":1,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key Research and Development Program of China","doi-asserted-by":"publisher","award":["2017YFC0908600","2018YFC0910500"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["U1909208","81872798"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Key R&D Program of Zhejiang Province","award":["2020C03010"]},{"name":"Central Universities","award":["2018QNA7023","10611CDJXZ238826","2018CDQYSG0007","CDJZR14468801"]},{"DOI":"10.13039\/501100004835","name":"Zhejiang University","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100004835","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012455","name":"China Knowledge Centre for Engineering Sciences and Technology","doi-asserted-by":"publisher","award":["CKCEST-2019-1-12"],"id":[{"id":"10.13039\/501100012455","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2021,1,8]]},"abstract":"Abstract<\/jats:title>Drug-metabolizing enzymes (DMEs) are critical determinant of drug safety and efficacy, and the interactome of DMEs has attracted extensive attention. There are 3 major interaction types in an interactome: microbiome\u2013DME interaction (MICBIO), xenobiotics\u2013DME interaction (XEOTIC)\u00a0and host protein\u2013DME interaction (HOSPPI). The interaction data of each type are essential for drug metabolism, and the collective consideration of multiple types has implication for the future practice of precision medicine. However, no database was designed to systematically provide the data of all types of DME interactions. Here, a database of the Interactome of Drug-Metabolizing Enzymes (INTEDE) was therefore constructed to offer these interaction data. First, 1047 unique DMEs (448 host and 599 microbial) were confirmed, for the first time, using their metabolizing drugs. Second, for these newly confirmed DMEs, all types of their interactions (3359 MICBIOs between 225 microbial species and 185 DMEs; 47 778 XEOTICs between 4150 xenobiotics and 501 DMEs; 7849 HOSPPIs between 565 human proteins and 566 DMEs) were comprehensively collected and then provided, which enabled the crosstalk analysis among multiple types. Because of the huge amount of accumulated data, the INTEDE made it possible to generalize key features for revealing disease etiology and optimizing clinical treatment. INTEDE is freely accessible at: https:\/\/idrblab.org\/intede\/<\/jats:p>","DOI":"10.1093\/nar\/gkaa755","type":"journal-article","created":{"date-parts":[[2020,9,22]],"date-time":"2020-09-22T11:20:37Z","timestamp":1600773637000},"page":"D1233-D1243","source":"Crossref","is-referenced-by-count":77,"title":["INTEDE: interactome of drug-metabolizing enzymes"],"prefix":"10.1093","volume":"49","author":[{"given":"Jiayi","family":"Yin","sequence":"first","affiliation":[{"name":"College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China"}]},{"given":"Fengcheng","family":"Li","sequence":"additional","affiliation":[{"name":"College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China"}]},{"given":"Ying","family":"Zhou","sequence":"additional","affiliation":[{"name":"The First Affiliated Hospital, Zhejiang University, Hangzhou 310000, China"}]},{"given":"Minjie","family":"Mou","sequence":"additional","affiliation":[{"name":"College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China"}]},{"given":"Yinjing","family":"Lu","sequence":"additional","affiliation":[{"name":"College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China"}]},{"given":"Kangli","family":"Chen","sequence":"additional","affiliation":[{"name":"College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China"}]},{"given":"Jia","family":"Xue","sequence":"additional","affiliation":[{"name":"College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China"}]},{"given":"Yongchao","family":"Luo","sequence":"additional","affiliation":[{"name":"College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China"}]},{"given":"Jianbo","family":"Fu","sequence":"additional","affiliation":[{"name":"College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China"}]},{"given":"Xu","family":"He","sequence":"additional","affiliation":[{"name":"College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China"}]},{"given":"Jianqing","family":"Gao","sequence":"additional","affiliation":[{"name":"College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China"},{"name":"Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China"}]},{"given":"Su","family":"Zeng","sequence":"additional","affiliation":[{"name":"College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China"},{"name":"Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China"}]},{"given":"Lushan","family":"Yu","sequence":"additional","affiliation":[{"name":"College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8069-0053","authenticated-orcid":false,"given":"Feng","family":"Zhu","sequence":"additional","affiliation":[{"name":"College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China"},{"name":"Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou 310018, China"}]}],"member":"286","published-online":{"date-parts":[[2020,10,12]]},"reference":[{"key":"2021010313120159800_B1","doi-asserted-by":"crossref","first-page":"387","DOI":"10.1038\/nrd4581","article-title":"Predicting drug metabolism: experiment and\/or computation","volume":"14","author":"Kirchmair","year":"2015","journal-title":"Nat. Rev. Drug Discov."},{"key":"2021010313120159800_B2","doi-asserted-by":"crossref","first-page":"235","DOI":"10.1016\/j.cmet.2019.07.005","article-title":"Drug metabolism as a community effort","volume":"30","author":"Hitchings","year":"2019","journal-title":"Cell Metab."},{"key":"2021010313120159800_B3","doi-asserted-by":"crossref","first-page":"499","DOI":"10.1038\/s41586-019-0965-1","article-title":"A new genomic blueprint of the human gut microbiota","volume":"568","author":"Almeida","year":"2019","journal-title":"Nature"},{"key":"2021010313120159800_B4","doi-asserted-by":"crossref","first-page":"442","DOI":"10.1016\/j.cell.2017.03.040","article-title":"Host-microbe co-metabolism dictates cancer drug efficacy in C. elegans","volume":"169","author":"Scott","year":"2017","journal-title":"Cell"},{"key":"2021010313120159800_B5","doi-asserted-by":"crossref","first-page":"198","DOI":"10.1124\/pr.118.015768","article-title":"Gut reactions: breaking down xenobiotic-microbiome interactions","volume":"71","author":"Clarke","year":"2019","journal-title":"Pharmacol. Rev."},{"key":"2021010313120159800_B6","doi-asserted-by":"crossref","first-page":"462","DOI":"10.1038\/s41586-019-1291-3","article-title":"Mapping human microbiome drug metabolism by gut bacteria and their genes","volume":"570","author":"Zimmermann","year":"2019","journal-title":"Nature"},{"key":"2021010313120159800_B7","doi-asserted-by":"crossref","first-page":"107414","DOI":"10.1016\/j.pharmthera.2019.107414","article-title":"The UGTome: the expanding diversity of UDP glycosyltransferases and its impact on small molecule metabolism","volume":"204","author":"Hu","year":"2019","journal-title":"Pharmacol. Ther."},{"key":"2021010313120159800_B8","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1080\/03602532.2018.1554673","article-title":"Regulation of brain drug metabolizing enzymes and transporters by nuclear receptors","volume":"50","author":"Xu","year":"2018","journal-title":"Drug Metab. Rev."},{"key":"2021010313120159800_B9","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1146\/annurev-pharmtox-010617-053021","article-title":"Pharmacoepigenetics and toxicoepigenetics: novel mechanistic insights and therapeutic opportunities","volume":"58","author":"Lauschke","year":"2018","journal-title":"Annu. Rev. Pharmacol. Toxicol."},{"key":"2021010313120159800_B10","doi-asserted-by":"crossref","first-page":"eaau6323","DOI":"10.1126\/science.aau6323","article-title":"Discovery and inhibition of an interspecies gut bacterial pathway for levodopa metabolism","volume":"364","author":"Maini\u00a0Rekdal","year":"2019","journal-title":"Science"},{"key":"2021010313120159800_B11","doi-asserted-by":"crossref","first-page":"1469","DOI":"10.1124\/dmd.119.088930","article-title":"Toxicokinetic interaction between hepatic disposition and pulmonary bioactivation of inhaled naphthalene studied using Cyp2abfgs-null and CYP2A13\/2F1-humanized mice with deficient hepatic cytochrome P450 activity","volume":"47","author":"Kovalchuk","year":"2019","journal-title":"Drug Metab. Dispos."},{"key":"2021010313120159800_B12","doi-asserted-by":"crossref","first-page":"965","DOI":"10.1016\/j.jfda.2018.05.005","article-title":"Pyrrole-protein adducts - a biomarker of pyrrolizidine alkaloid-induced hepatotoxicity","volume":"26","author":"Ma","year":"2018","journal-title":"J. Food Drug. Anal."},{"key":"2021010313120159800_B13","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1016\/j.maturitas.2018.03.012","article-title":"Microbiota-drug interactions: impact on metabolism and efficacy of therapeutics","volume":"112","author":"Wilkinson","year":"2018","journal-title":"Maturitas"},{"key":"2021010313120159800_B14","doi-asserted-by":"crossref","first-page":"432","DOI":"10.1007\/s13238-018-0547-2","article-title":"Pharmacomicrobiomics: a novel route towards personalized medicine","volume":"9","author":"Doestzada","year":"2018","journal-title":"Protein Cell"},{"key":"2021010313120159800_B15","doi-asserted-by":"crossref","first-page":"eaat9931","DOI":"10.1126\/science.aat9931","article-title":"Separating host and microbiome contributions to drug pharmacokinetics and toxicity","volume":"363","author":"Zimmermann","year":"2019","journal-title":"Science"},{"key":"2021010313120159800_B16","doi-asserted-by":"crossref","first-page":"489","DOI":"10.1038\/d41586-020-01472-9","article-title":"Microbial matters: modelling the complex web of host-microbiome interactions","volume":"581","author":"Eisenstein","year":"2020","journal-title":"Nature"},{"key":"2021010313120159800_B17","doi-asserted-by":"crossref","first-page":"22","DOI":"10.1016\/j.chom.2019.06.011","article-title":"Precision medicine goes microscopic: engineering the microbiome to improve drug outcomes","volume":"26","author":"Lam","year":"2019","journal-title":"Cell Host Microbe"},{"key":"2021010313120159800_B18","doi-asserted-by":"crossref","first-page":"1716","DOI":"10.1136\/gutjnl-2018-316723","article-title":"Human gut microbiome: hopes, threats and promises","volume":"67","author":"Cani","year":"2018","journal-title":"Gut"},{"key":"2021010313120159800_B19","doi-asserted-by":"crossref","first-page":"S10","DOI":"10.1038\/d41586-020-00196-0","article-title":"The complex relationship between drugs and the microbiome","volume":"577","author":"Savage","year":"2020","journal-title":"Nature"},{"key":"2021010313120159800_B20","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1016\/j.apsb.2019.12.001","article-title":"The gut microbiome: an orchestrator of xenobiotic metabolism","volume":"10","author":"Collins","year":"2020","journal-title":"Acta Pharm. Sin. B"},{"key":"2021010313120159800_B21","doi-asserted-by":"crossref","first-page":"1156","DOI":"10.1126\/science.aah5043","article-title":"Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine","volume":"357","author":"Geller","year":"2017","journal-title":"Science"},{"key":"2021010313120159800_B22","doi-asserted-by":"crossref","first-page":"D1074","DOI":"10.1093\/nar\/gkx1037","article-title":"DrugBank 5.0: a major update to the DrugBank database for 2018","volume":"46","author":"Wishart","year":"2018","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B23","doi-asserted-by":"crossref","first-page":"D464","DOI":"10.1093\/nar\/gky1004","article-title":"RCSB Protein Data Bank: biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy","volume":"47","author":"Burley","year":"2019","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B24","doi-asserted-by":"crossref","first-page":"e1417","DOI":"10.1002\/wsbm.1417","article-title":"PharmGKB: a worldwide resource for pharmacogenomic information","volume":"10","author":"Barbarino","year":"2018","journal-title":"Wiley Interdiscip. Rev. Syst. Biol. Med."},{"key":"2021010313120159800_B25","doi-asserted-by":"crossref","first-page":"1260419","DOI":"10.1126\/science.1260419","article-title":"Tissue-based map of the human proteome","volume":"347","author":"Uhlen","year":"2015","journal-title":"Science"},{"key":"2021010313120159800_B26","first-page":"D1031","article-title":"Therapeutic target database 2020: enriched resource for facilitating research and early development of targeted therapeutics","volume":"48","author":"Wang","year":"2020","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B27","doi-asserted-by":"crossref","first-page":"D506","DOI":"10.1093\/nar\/gky1049","article-title":"UniProt: a worldwide hub of protein knowledge","volume":"47","author":"UniProt","year":"2019","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B28","doi-asserted-by":"crossref","first-page":"D542","DOI":"10.1093\/nar\/gky1048","article-title":"BRENDA in 2019: a european ELIXIR core data resource","volume":"47","author":"Jeske","year":"2019","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B29","doi-asserted-by":"crossref","first-page":"D590","DOI":"10.1093\/nar\/gky962","article-title":"New approach for understanding genome variations in KEGG","volume":"47","author":"Kanehisa","year":"2019","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B30","doi-asserted-by":"crossref","first-page":"D445","DOI":"10.1093\/nar\/gkz862","article-title":"The MetaCyc database of metabolic pathways and enzymes - a 2019 update","volume":"48","author":"Caspi","year":"2020","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B31","first-page":"D498","article-title":"The reactome pathway knowledgebase","volume":"48","author":"Jassal","year":"2020","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B32","doi-asserted-by":"crossref","first-page":"D478","DOI":"10.1093\/nar\/gkt1067","article-title":"SMPDB 2.0: big improvements to the Small Molecule Pathway Database","volume":"42","author":"Jewison","year":"2014","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B33","doi-asserted-by":"crossref","first-page":"D614","DOI":"10.1093\/nar\/gky992","article-title":"The virtual metabolic human database: integrating human and gut microbiome metabolism with nutrition and disease","volume":"47","author":"Noronha","year":"2019","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B34","doi-asserted-by":"crossref","first-page":"D948","DOI":"10.1093\/nar\/gky868","article-title":"The comparative toxicogenomics database: update 2019","volume":"47","author":"Davis","year":"2019","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B35","doi-asserted-by":"crossref","first-page":"D928","DOI":"10.1093\/nar\/gku1004","article-title":"T3DB: the toxic exposome database","volume":"43","author":"Wishart","year":"2015","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B36","doi-asserted-by":"crossref","first-page":"D1113","DOI":"10.1093\/nar\/gkt1246","article-title":"The Transformer database: biotransformation of xenobiotics","volume":"42","author":"Hoffmann","year":"2014","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B37","doi-asserted-by":"crossref","first-page":"1082","DOI":"10.1002\/cpt.1693","article-title":"Physiologically-based pharmacokinetic models for evaluating membrane transporter mediated drug-drug interactions: current capabilities, case studies, future opportunities, and recommendations","volume":"107","author":"Taskar","year":"2020","journal-title":"Clin. Pharmacol. Ther."},{"key":"2021010313120159800_B38","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1016\/j.dmpk.2019.10.006","article-title":"Evaluation of drug-drug interactions in drug metabolism: differences and harmonization in guidance\/guidelines","volume":"35","author":"Iwatsubo","year":"2020","journal-title":"Drug Metab. Pharmacokinet."},{"key":"2021010313120159800_B39","doi-asserted-by":"crossref","first-page":"k1452","DOI":"10.1136\/bmj.k1452","article-title":"How to avoid common problems when using ClinicalTrials.gov in research: 10 issues to consider","volume":"361","author":"Tse","year":"2018","journal-title":"BMJ"},{"key":"2021010313120159800_B40","doi-asserted-by":"crossref","first-page":"D1121","DOI":"10.1093\/nar\/gkx1076","article-title":"Therapeutic target database update 2018: enriched resource for facilitating bench-to-clinic research of targeted therapeutics","volume":"46","author":"Li","year":"2018","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B41","doi-asserted-by":"crossref","first-page":"D9","DOI":"10.1093\/nar\/gkz899","article-title":"Database resources of the national center for biotechnology information","volume":"48","author":"Sayers","year":"2020","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B42","doi-asserted-by":"crossref","first-page":"352","DOI":"10.1080\/21505594.2016.1247140","article-title":"Fungi in the healthy human gastrointestinal tract","volume":"8","author":"Hallen-Adams","year":"2017","journal-title":"Virulence"},{"key":"2021010313120159800_B43","first-page":"djw029","article-title":"The intestinal microbiome and estrogen receptor-positive female breast cancer","volume":"108","author":"Kwa","year":"2016","journal-title":"J. Natl. Cancer Inst."},{"key":"2021010313120159800_B44","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1186\/s40246-019-0211-9","article-title":"Interplay between the host, the human microbiome, and drug metabolism","volume":"13","author":"Nichols","year":"2019","journal-title":"Hum. Genomics"},{"key":"2021010313120159800_B45","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1016\/j.jtos.2018.11.005","article-title":"Biogeography of the human ocular microbiota","volume":"17","author":"Ozkan","year":"2019","journal-title":"Ocul. Surf."},{"key":"2021010313120159800_B46","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1016\/j.fertnstert.2018.06.041","article-title":"Introduction: do microbes in the female reproductive function matter","volume":"110","author":"Simon","year":"2018","journal-title":"Fertil. Steril."},{"key":"2021010313120159800_B47","doi-asserted-by":"crossref","first-page":"380","DOI":"10.1124\/dmd.117.078840","article-title":"CYP2J2 expression in adult ventricular myocytes protects against reactive oxygen species toxicity","volume":"46","author":"Evangelista","year":"2018","journal-title":"Drug Metab. Dispos."},{"key":"2021010313120159800_B48","doi-asserted-by":"crossref","first-page":"89","DOI":"10.3389\/fimmu.2018.00089","article-title":"The role of cytochromes P450 in infection","volume":"9","author":"Stavropoulou","year":"2018","journal-title":"Front. Immunol."},{"key":"2021010313120159800_B49","doi-asserted-by":"crossref","first-page":"698","DOI":"10.1124\/dmd.115.063305","article-title":"Suppression of pulmonary CYP2A13 expression by carcinogen-induced lung tumorigenesis in a CYP2A13-humanized mouse model","volume":"43","author":"Liu","year":"2015","journal-title":"Drug Metab. Dispos."},{"key":"2021010313120159800_B50","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1016\/j.pharmthera.2016.01.009","article-title":"The role of glucuronidation in drug resistance","volume":"159","author":"Mazerska","year":"2016","journal-title":"Pharmacol. Ther."},{"key":"2021010313120159800_B51","first-page":"1226","article-title":"Metabolic pathways and immunometabolism in rare kidney diseases","volume":"77","author":"Grayson","year":"2018","journal-title":"Ann. Rheum. Dis."},{"key":"2021010313120159800_B52","doi-asserted-by":"crossref","first-page":"649","DOI":"10.1093\/bib\/bby130","article-title":"Clinical trials, progression-speed differentiating features and swiftness rule of the innovative targets of first-in-class drugs","volume":"21","author":"Li","year":"2020","journal-title":"Brief. Bioinform."},{"key":"2021010313120159800_B53","doi-asserted-by":"crossref","first-page":"D991","DOI":"10.1093\/nar\/gks1193","article-title":"NCBI GEO: archive for functional genomics data sets-update","volume":"41","author":"Barrett","year":"2013","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B54","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1093\/bioinformatics\/btg405","article-title":"Affy-analysis of affymetrix genechip data at the probe level","volume":"20","author":"Gautier","year":"2004","journal-title":"Bioinformatics"},{"key":"2021010313120159800_B55","doi-asserted-by":"crossref","first-page":"185","DOI":"10.1093\/bioinformatics\/19.2.185","article-title":"A comparison of normalization methods for high density oligonucleotide array data based on variance and bias","volume":"19","author":"Bolstad","year":"2003","journal-title":"Bioinformatics"},{"key":"2021010313120159800_B56","doi-asserted-by":"crossref","first-page":"127","DOI":"10.1016\/j.ygeno.2005.04.008","article-title":"Interpreting expression profiles of cancers by genome-wide survey of breadth of expression in normal tissues","volume":"86","author":"Ge","year":"2005","journal-title":"Genomics"},{"key":"2021010313120159800_B57","doi-asserted-by":"crossref","first-page":"356","DOI":"10.1038\/nrgastro.2017.20","article-title":"Gut microbiota modulation of chemotherapy efficacy and toxicity","volume":"14","author":"Alexander","year":"2017","journal-title":"Nat. Rev. Gastroenterol. Hepatol."},{"key":"2021010313120159800_B58","doi-asserted-by":"crossref","first-page":"2197","DOI":"10.1007\/s00204-019-02499-2","article-title":"Intestinal and hepatic biotransformation of pyrrolizidine alkaloid N-oxides to toxic pyrrolizidine alkaloids","volume":"93","author":"Yang","year":"2019","journal-title":"Arch. Toxicol."},{"key":"2021010313120159800_B59","first-page":"116","article-title":"Microbiota in the gastrointestinal tract","volume":"6","author":"Dieterich","year":"2018","journal-title":"Med. Sci."},{"key":"2021010313120159800_B60","doi-asserted-by":"crossref","first-page":"621","DOI":"10.1093\/bib\/bby127","article-title":"ANPELA: analysis and performance assessment of the label-free quantification workflow for metaproteomic studies","volume":"21","author":"Tang","year":"2020","journal-title":"Brief. Bioinform."},{"key":"2021010313120159800_B61","doi-asserted-by":"crossref","first-page":"938","DOI":"10.1126\/science.aai9383","article-title":"Vaginal bacteria modify HIV tenofovir microbicide efficacy in African women","volume":"356","author":"Klatt","year":"2017","journal-title":"Science"},{"key":"2021010313120159800_B62","doi-asserted-by":"crossref","first-page":"1683","DOI":"10.1074\/mcp.RA118.001169","article-title":"Simultaneous improvement in the precision, accuracy, and robustness of label-free proteome quantification by optimizing data manipulation chains","volume":"18","author":"Tang","year":"2019","journal-title":"Mol. Cell Proteomics"},{"key":"2021010313120159800_B63","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1124\/pr.116.013441","article-title":"Systems chronotherapeutics","volume":"69","author":"Ballesta","year":"2017","journal-title":"Pharmacol. Re.v"},{"key":"2021010313120159800_B64","doi-asserted-by":"crossref","first-page":"110756","DOI":"10.1016\/j.msec.2020.110756","article-title":"Electrospun nanofibers for the delivery of active drugs through nasal, oral and vaginal mucosa: current status and future perspectives","volume":"111","author":"Sofi","year":"2020","journal-title":"Mater. Sci. Eng. C Mater. Biol. Appl."},{"key":"2021010313120159800_B65","doi-asserted-by":"crossref","first-page":"D1086","DOI":"10.1093\/nar\/gku1127","article-title":"Type material in the NCBI taxonomy database","volume":"43","author":"Federhen","year":"2015","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B66","doi-asserted-by":"crossref","first-page":"362","DOI":"10.1093\/toxsci\/kfz225","article-title":"Proximal tubular vacuolization and hypersensitivity to drug-induced nephrotoxicity in male mice with decreased expression of the NADPH-cytochrome P450 reductase","volume":"173","author":"Ding","year":"2020","journal-title":"Toxicol. Sci."},{"key":"2021010313120159800_B67","doi-asserted-by":"crossref","first-page":"1184","DOI":"10.1038\/aps.2016.157","article-title":"The regioselective glucuronidation of morphine by dimerized human UGT2B7, 1A1, 1A9 and their allelic variants","volume":"38","author":"Yang","year":"2017","journal-title":"Acta Pharmacol. Sin."},{"key":"2021010313120159800_B68","doi-asserted-by":"crossref","first-page":"23763","DOI":"10.1038\/srep23763","article-title":"Dimerization of human uridine diphosphate glucuronosyltransferase allozymes 1A1 and 1A9 alters their quercetin glucuronidation activities","volume":"6","author":"Liu","year":"2016","journal-title":"Sci. Rep."},{"key":"2021010313120159800_B69","doi-asserted-by":"crossref","first-page":"34450","DOI":"10.1038\/srep34450","article-title":"Inter-isoform hetero-dimerization of human UDP-glucuronosyltransferases (UGTs) 1A1, 1A9, and 2B7 and impacts on glucuronidation activity","volume":"6","author":"Yuan","year":"2016","journal-title":"Sci. Rep."},{"key":"2021010313120159800_B70","doi-asserted-by":"crossref","first-page":"749","DOI":"10.1124\/mol.118.112235","article-title":"A transcriptional regulatory network containing nuclear receptors and long noncoding RNAs controls basal and drug-induced expression of cytochrome P450s in HepaRG cells","volume":"94","author":"Chen","year":"2018","journal-title":"Mol. Pharmacol."},{"key":"2021010313120159800_B71","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1124\/dmd.116.072249","article-title":"Transcriptional regulation of CYP2D6 expression","volume":"45","author":"Pan","year":"2017","journal-title":"Drug Metab. Dispos."},{"key":"2021010313120159800_B72","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1016\/j.apsb.2015.01.007","article-title":"Epigenetic regulation of drug metabolism and transport","volume":"5","author":"Peng","year":"2015","journal-title":"Acta Pharm. Sin. B"},{"key":"2021010313120159800_B73","doi-asserted-by":"crossref","first-page":"512","DOI":"10.1002\/cpt.343","article-title":"DNA methylation of ADME genes","volume":"99","author":"Fisel","year":"2016","journal-title":"Clin. Pharmacol. Ther."},{"key":"2021010313120159800_B74","doi-asserted-by":"crossref","first-page":"605","DOI":"10.1080\/17425255.2017.1292251","article-title":"Regulation of drug-metabolizing enzymes in infectious and inflammatory disease: implications for biologics-small molecule drug interactions","volume":"13","author":"Mallick","year":"2017","journal-title":"Expert Opin. Drug Metab. Toxicol."},{"key":"2021010313120159800_B75","doi-asserted-by":"crossref","first-page":"115","DOI":"10.1186\/s12859-018-2096-3","article-title":"A framework for analyzing DNA methylation data from Illumina Infinium HumanMethylation450 BeadChip","volume":"19","author":"Wang","year":"2018","journal-title":"BMC Bioinformatics"},{"key":"2021010313120159800_B76","doi-asserted-by":"crossref","first-page":"643","DOI":"10.2217\/epi-2017-0105","article-title":"Positional effects revealed in Illumina methylation array and the impact on analysis","volume":"10","author":"Jiao","year":"2018","journal-title":"Epigenomics"},{"key":"2021010313120159800_B77","doi-asserted-by":"crossref","first-page":"3411","DOI":"10.1016\/j.jmb.2020.01.027","article-title":"SSizer: determining the sample sufficiency for comparative biological study","volume":"432","author":"Li","year":"2020","journal-title":"J. Mol. Biol."},{"key":"2021010313120159800_B78","doi-asserted-by":"crossref","first-page":"681","DOI":"10.3389\/fphar.2018.00681","article-title":"Discovery of the consistently well-performed analysis chain for SWATH-MS based pharmacoproteomic quantification","volume":"9","author":"Fu","year":"2018","journal-title":"Front. Pharmacol."},{"key":"2021010313120159800_B79","doi-asserted-by":"crossref","first-page":"e117","DOI":"10.1093\/nar\/gkt242","article-title":"COHCAP: an integrative genomic pipeline for single-nucleotide resolution DNA methylation analysis","volume":"41","author":"Warden","year":"2013","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B80","doi-asserted-by":"crossref","first-page":"e55761","DOI":"10.1371\/journal.pone.0055761","article-title":"Elucidating the landscape of aberrant DNA methylation in hepatocellular carcinoma","volume":"8","author":"Song","year":"2013","journal-title":"PLoS One"},{"key":"2021010313120159800_B81","doi-asserted-by":"crossref","first-page":"2275","DOI":"10.1016\/S0140-6736(19)31205-X","article-title":"ICD-11","volume":"393","author":"Lancet","year":"2019","journal-title":"Lancet"},{"key":"2021010313120159800_B82","doi-asserted-by":"crossref","first-page":"1241","DOI":"10.1124\/dmd.118.080861","article-title":"Consequences of phenytoin exposure on hepatic cytochrome P450 expression during postnatal liver maturation in mice","volume":"46","author":"Piekos","year":"2018","journal-title":"Drug Metab. Dispos."},{"key":"2021010313120159800_B83","doi-asserted-by":"crossref","first-page":"977","DOI":"10.1124\/dmd.117.076406","article-title":"Role of CYP2B in phenobarbital-induced hepatocyte proliferation in mice","volume":"45","author":"Li","year":"2017","journal-title":"Drug Metab. Dispos."},{"key":"2021010313120159800_B84","doi-asserted-by":"crossref","first-page":"168","DOI":"10.1124\/pr.115.011411","article-title":"Role of cytochrome P450 2C8 in drug metabolism and interactions","volume":"68","author":"Backman","year":"2016","journal-title":"Pharmacol. Rev."},{"key":"2021010313120159800_B85","doi-asserted-by":"crossref","first-page":"404","DOI":"10.3389\/fphar.2016.00404","article-title":"Reverse of acute and chronic morphine tolerance by lithocholic acid via down-regulating UGT2B7","volume":"7","author":"Yang","year":"2016","journal-title":"Front. Pharmacol."},{"key":"2021010313120159800_B86","doi-asserted-by":"crossref","first-page":"241","DOI":"10.1016\/j.apsb.2016.12.006","article-title":"Regulation of drug metabolism and toxicity by multiple factors of genetics, epigenetics, lncRNAs, gut microbiota, and diseases: a meeting report of the 21(st) international symposium on microsomes and drug oxidations (MDO)","volume":"7","author":"Yu","year":"2017","journal-title":"Acta Pharm. Sin. B"},{"key":"2021010313120159800_B87","doi-asserted-by":"crossref","first-page":"2086","DOI":"10.1158\/1535-7163.MCT-16-0095","article-title":"Vitamin D enhances the efficacy of irinotecan through miR-627-mediated inhibition of intratumoral drug metabolism","volume":"15","author":"Sun","year":"2016","journal-title":"Mol. Cancer Ther."},{"key":"2021010313120159800_B88","doi-asserted-by":"crossref","first-page":"D1042","DOI":"10.1093\/nar\/gkz779","article-title":"VARIDT 1.0: variability of drug transporter database","volume":"48","author":"Yin","year":"2020","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B89","doi-asserted-by":"crossref","first-page":"639","DOI":"10.1016\/j.apsb.2018.12.002","article-title":"Bioengineered miR-27b-3p and miR-328-3p modulate drug metabolism and disposition via the regulation of target ADME gene expression","volume":"9","author":"Li","year":"2019","journal-title":"Acta Pharm. Sin. B"},{"key":"2021010313120159800_B90","doi-asserted-by":"crossref","first-page":"1069","DOI":"10.1093\/bib\/bbz050","article-title":"PRISMOID: a comprehensive 3D structure database for post-translational modifications and mutations with functional impact","volume":"21","author":"Li","year":"2020","journal-title":"Brie.f Bioinform."},{"key":"2021010313120159800_B91","doi-asserted-by":"crossref","first-page":"W436","DOI":"10.1093\/nar\/gkaa258","article-title":"NOREVA: enhanced normalization and evaluation of time-course and multi-class metabolomic data","volume":"48","author":"Yang","year":"2020","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B92","doi-asserted-by":"crossref","first-page":"1128","DOI":"10.1021\/acschemneuro.7b00490","article-title":"What contributes to serotonin-norepinephrine reuptake inhibitors' dual-targeting mechanism? The key role of transmembrane domain 6 in human serotonin and norepinephrine transporters revealed by molecular dynamics simulation","volume":"9","author":"Xue","year":"2018","journal-title":"ACS Chem. Neurosci."},{"key":"2021010313120159800_B93","doi-asserted-by":"crossref","first-page":"W162","DOI":"10.1093\/nar\/gkx449","article-title":"NOREVA: normalization and evaluation of MS-based metabolomics data","volume":"45","author":"Li","year":"2017","journal-title":"Nucleic Acids Res."},{"key":"2021010313120159800_B94","doi-asserted-by":"crossref","first-page":"1058","DOI":"10.1093\/bib\/bbz049","article-title":"Consistent gene signature of schizophrenia identified by a novel feature selection strategy from comprehensive sets of transcriptomic data","volume":"21","author":"Yang","year":"2020","journal-title":"Brief. Bioinform."},{"key":"2021010313120159800_B95","doi-asserted-by":"crossref","first-page":"113638","DOI":"10.1016\/j.bcp.2019.113638","article-title":"Advances and challenges in studying noncoding RNA regulation of drug metabolism and development of RNA therapeutics","volume":"169","author":"Ning","year":"2019","journal-title":"Biochem Pharmacol"},{"key":"2021010313120159800_B96","doi-asserted-by":"crossref","first-page":"2185","DOI":"10.1093\/bib\/bby079","article-title":"Computational analysis and prediction of lysine malonylation sites by exploiting informative features in an integrative machine-learning framework","volume":"20","author":"Zhang","year":"2019","journal-title":"Brief. Bioinform."}],"container-title":["Nucleic Acids Research"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/academic.oup.com\/nar\/article-pdf\/49\/D1\/D1233\/35364199\/gkaa755.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"syndication"},{"URL":"http:\/\/academic.oup.com\/nar\/article-pdf\/49\/D1\/D1233\/35364199\/gkaa755.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,4,2]],"date-time":"2021-04-02T23:24:20Z","timestamp":1617405860000},"score":1,"resource":{"primary":{"URL":"https:\/\/academic.oup.com\/nar\/article\/49\/D1\/D1233\/5921284"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2020,10,12]]},"references-count":96,"journal-issue":{"issue":"D1","published-online":{"date-parts":[[2020,10,12]]},"published-print":{"date-parts":[[2021,1,8]]}},"URL":"https:\/\/doi.org\/10.1093\/nar\/gkaa755","relation":{},"ISSN":["0305-1048","1362-4962"],"issn-type":[{"value":"0305-1048","type":"print"},{"value":"1362-4962","type":"electronic"}],"subject":[],"published-other":{"date-parts":[[2021,1,8]]},"published":{"date-parts":[[2020,10,12]]}}}