{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,5,25]],"date-time":"2024-05-25T19:13:47Z","timestamp":1716664427017},"reference-count":54,"publisher":"Oxford University Press (OUP)","issue":"5","license":[{"start":{"date-parts":[[2022,5,13]],"date-time":"2022-05-13T00:00:00Z","timestamp":1652400000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/academic.oup.com\/journals\/pages\/open_access\/funder_policies\/chorus\/standard_publication_model"}],"funder":[{"DOI":"10.13039\/501100011496","name":"Changsha Municipal Science and Technology Bureau","doi-asserted-by":"publisher","award":["kq2014058","19C1788"],"id":[{"id":"10.13039\/501100011496","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["62002111"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2022,9,20]]},"abstract":"Abstract<\/jats:title>Accurate inference of gene regulatory networks (GRNs) is an essential premise for understanding pathogenesis and curing diseases. Various computational methods have been developed for GRN inference, but the identification of redundant regulation remains a challenge faced by researchers. Although combining global and local topology can identify and reduce redundant regulations, the topologies\u2019 specific forms and cooperation modes are unclear and real regulations may be sacrificed. Here, we propose a network structure control method [network-structure-controlling-based GRN inference method (NSCGRN)] that stipulates the global and local topology\u2019s specific forms and cooperation mode. The method is carried out in a cooperative mode of \u2018global topology dominates and local topology refines\u2019. Global topology requires layering and sparseness of the network, and local topology requires consistency of the subgraph association pattern with the network motifs (fan-in, fan-out, cascade and feedforward loop). Specifically, an ordered gene list is obtained by network topology centrality sorting. A Bernaola\u2013Galvan mutation detection algorithm applied to the list gives the hierarchy of GRNs to control the upstream and downstream regulations within the global scope. Finally, four network motifs are integrated into the hierarchy to optimize local complex regulations and form a cooperative mode where global and local topologies play the dominant and refined roles, respectively. NSCGRN is compared with state-of-the-art methods on three different datasets (six networks in total), and it achieves the highest F1 and Matthews correlation coefficient. Experimental results show its unique advantages in GRN inference.<\/jats:p>","DOI":"10.1093\/bib\/bbac156","type":"journal-article","created":{"date-parts":[[2022,4,14]],"date-time":"2022-04-14T11:16:25Z","timestamp":1649934985000},"source":"Crossref","is-referenced-by-count":16,"title":["NSCGRN: a network structure control method for gene regulatory network inference"],"prefix":"10.1093","volume":"23","author":[{"given":"Wei","family":"Liu","sequence":"first","affiliation":[{"name":"Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education , Xiangtan University, Xiangtan, 411105, China"},{"name":"School of Computer Science, Xiangtan University , Xiangtan, 411105, China"}]},{"given":"Xingen","family":"Sun","sequence":"additional","affiliation":[{"name":"School of Computer Science, Xiangtan University , Xiangtan, 411105, China"},{"name":"Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education , Xiangtan University, Xiangtan, 411105, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8614-4555","authenticated-orcid":false,"given":"Li","family":"Yang","sequence":"additional","affiliation":[{"name":"Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education , Xiangtan University, Xiangtan, 411105, China"}]},{"given":"Kaiwen","family":"Li","sequence":"additional","affiliation":[{"name":"Artificial Intelligence Research Institute , China University of Mining and Technology, Xuzhou, 221116, China"}]},{"given":"Yu","family":"Yang","sequence":"additional","affiliation":[{"name":"School of Computer Science, Xiangtan University , Xiangtan, 411105, China"},{"name":"Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education , Xiangtan University, Xiangtan, 411105, China"}]},{"given":"Xiangzheng","family":"Fu","sequence":"additional","affiliation":[{"name":"College of Computer Science and Electronic Engineering , Hunan University, Changsha, 410000, China"}]}],"member":"286","published-online":{"date-parts":[[2022,5,13]]},"reference":[{"issue":"6","key":"2022092013193278200_ref1","doi-asserted-by":"crossref","first-page":"1453","DOI":"10.1016\/j.cell.2015.04.053","article-title":"A unique gene regulatory network resets the human germline epigenome for development","volume":"161","author":"Tang","year":"2015","journal-title":"Cell"},{"issue":"6","key":"2022092013193278200_ref2","doi-asserted-by":"crossref","first-page":"1013","DOI":"10.1007\/s00018-017-2679-6","article-title":"Differential gene regulatory networks in development and disease","volume":"75","author":"Singh","year":"2018","journal-title":"Cell Mol Life Sci"},{"issue":"1","key":"2022092013193278200_ref3","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1038\/s41540-020-0140-1","article-title":"Supervised learning of gene-regulatory networks based on graph distance profiles of transcriptomics data","volume":"6","author":"Razaghi-Moghadam","year":"2020","journal-title":"NPJ Syst Biol Appl"},{"issue":"5","key":"2022092013193278200_ref4","doi-asserted-by":"crossref","DOI":"10.1093\/bib\/bbab009","article-title":"A comprehensive overview and critical evaluation of gene regulatory network inference technologies","volume":"22","author":"Zhao","year":"2021","journal-title":"Brief Bioinform"},{"issue":"2","key":"2022092013193278200_ref5","doi-asserted-by":"crossref","DOI":"10.1093\/bib\/bbab568","article-title":"A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data","volume":"23","author":"Zhao","year":"2022","journal-title":"Brief Bioinform"},{"issue":"6","key":"2022092013193278200_ref6","doi-asserted-by":"crossref","DOI":"10.1093\/bib\/bbab166","article-title":"MMFGRN: a multi-source multi-model fusion method for gene regulatory network reconstruction","volume":"22","author":"He","year":"2021","journal-title":"Brief Bioinform"},{"key":"2022092013193278200_ref7","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/978-1-4939-8882-2_1","article-title":"Gene regulatory network inference: an introductory survey","volume":"1883","author":"Huynh-Thu","year":"2019","journal-title":"Methods Mol Biol"},{"issue":"14","key":"2022092013193278200_ref8","doi-asserted-by":"crossref","first-page":"6286","DOI":"10.1073\/pnas.0913357107","article-title":"Revealing strengths and weaknesses of methods for gene network inference","volume":"107","author":"Marbach","year":"2010","journal-title":"Proc Natl Acad Sci USA"},{"issue":"2","key":"2022092013193278200_ref9","doi-asserted-by":"crossref","first-page":"515","DOI":"10.1093\/bib\/bbx130","article-title":"MicroRNAs and complex diseases: from experimental results to computational models","volume":"20","author":"Chen","year":"2019","journal-title":"Brief Bioinform"},{"issue":"24","key":"2022092013193278200_ref10","doi-asserted-by":"crossref","first-page":"4256","DOI":"10.1093\/bioinformatics\/bty503","article-title":"Predicting miRNA-disease association based on inductive matrix completion","volume":"34","author":"Chen","year":"2018","journal-title":"Bioinformatics"},{"issue":"18","key":"2022092013193278200_ref11","doi-asserted-by":"crossref","first-page":"3178","DOI":"10.1093\/bioinformatics\/bty333","article-title":"BNPMDA: bipartite network projection for mirna-disease association prediction","volume":"34","author":"Chen","year":"2018","journal-title":"Bioinformatics"},{"issue":"8","key":"2022092013193278200_ref12","doi-asserted-by":"crossref","first-page":"e1006418","DOI":"10.1371\/journal.pcbi.1006418","article-title":"MDHGI: matrix decomposition and heterogeneous graph inference for miRNA-disease association prediction","volume":"14","author":"Chen","year":"2018","journal-title":"PLoS Comput Biol"},{"issue":"7","key":"2022092013193278200_ref13","doi-asserted-by":"crossref","first-page":"e1007209","DOI":"10.1371\/journal.pcbi.1007209","article-title":"Ensemble of decision tree reveals potential miRNA-disease associations","volume":"15","author":"Chen","year":"2019","journal-title":"PLoS Comput Biol"},{"issue":"10","key":"2022092013193278200_ref14","doi-asserted-by":"crossref","first-page":"3028","DOI":"10.1093\/bioinformatics\/btaa131","article-title":"StackCPPred: a stacking and pairwise energy content-based prediction of cell-penetrating peptides and their uptake efficiency","volume":"36","author":"Fu","year":"2020","journal-title":"Bioinformatics"},{"issue":"1","key":"2022092013193278200_ref15","doi-asserted-by":"crossref","first-page":"1090","DOI":"10.1038\/s41467-018-03424-4","article-title":"A comprehensive evaluation of module detection methods for gene expression data","volume":"9","author":"Saelens","year":"2018","journal-title":"Nat Commun"},{"issue":"6","key":"2022092013193278200_ref16","doi-asserted-by":"crossref","first-page":"194430","DOI":"10.1016\/j.bbagrm.2019.194430","article-title":"Gene regulatory network inference resources: a practical overview","volume":"1863","author":"Mercatelli","year":"2020","journal-title":"Bioch Biophys Acta \u2013 Gene Regulat Mech"},{"issue":"1","key":"2022092013193278200_ref17","doi-asserted-by":"crossref","first-page":"355","DOI":"10.1186\/s12859-016-1235-y","article-title":"BTR: training asynchronous Boolean models using single-cell expression data","volume":"17","author":"Lim","year":"2016","journal-title":"BMC Bioinform"},{"issue":"2","key":"2022092013193278200_ref18","doi-asserted-by":"crossref","first-page":"026004","DOI":"10.1088\/1478-3975\/abd3dd","article-title":"Boolean model for melanogenesis","volume":"18","author":"Dnyane","year":"2021","journal-title":"Phys Biol"},{"issue":"2","key":"2022092013193278200_ref19","doi-asserted-by":"crossref","first-page":"133","DOI":"10.1089\/cmb.2019.0290","article-title":"A robustness analysis of dynamic Boolean models of cellular circuits","volume":"27","author":"Bruner","year":"2020","journal-title":"J Comput Biol"},{"issue":"1","key":"2022092013193278200_ref20","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/S0022-5193(74)80037-8","article-title":"The large scale structure and dynamics of gene control circuits: an ensemble approach","volume":"44","author":"Kauffman","year":"1974","journal-title":"J Theor Biol"},{"key":"2022092013193278200_ref21","doi-asserted-by":"crossref","DOI":"10.1007\/978-3-030-64708-7_21","article-title":"Probabilistic calculations for large Boolean Models","volume-title":"Reliability Assessment of Safety and Production Systems","author":"Signoret","year":"2021"},{"key":"2022092013193278200_ref22","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1007\/978-1-4939-8882-2_2","article-title":"Statistical network inference for time-varying molecular data with dynamic Bayesian networks","volume":"1883","author":"Dondelinger","year":"2019","journal-title":"Methods Mol Biol"},{"issue":"6","key":"2022092013193278200_ref23","doi-asserted-by":"crossref","first-page":"964","DOI":"10.1093\/bioinformatics\/btx605","article-title":"A Bayesian framework for the inference of gene regulatory networks from time and pseudo-time series data","volume":"34","author":"Sanchez-Castillo","year":"2018","journal-title":"Bioinformatics"},{"key":"2022092013193278200_ref24","doi-asserted-by":"crossref","first-page":"331","DOI":"10.1007\/978-1-4939-7125-1_21","article-title":"Inferring gene regulatory networks in the arabidopsis root using a dynamic Bayesian network approach","volume":"1629","author":"Luis Balaguer","year":"2017","journal-title":"Methods Mol Biol"},{"issue":"9","key":"2022092013193278200_ref25","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1007\/s11538-020-00794-z","article-title":"Learning equations from biological data with limited time samples","volume":"82","author":"Nardini","year":"2020","journal-title":"Bull Math Biol"},{"issue":"1","key":"2022092013193278200_ref26","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1016\/j.cell.2009.01.055","article-title":"A yeast synthetic network for in vivo assessment of reverse-engineering and modeling approaches","volume":"137","author":"Cantone","year":"2009","journal-title":"Cell"},{"issue":"17","key":"2022092013193278200_ref27","doi-asserted-by":"crossref","first-page":"i468","DOI":"10.1093\/bioinformatics\/btu452","article-title":"Causal network inference using biochemical kinetics","volume":"30","author":"Oates","year":"2014","journal-title":"Bioinformatics"},{"issue":"1","key":"2022092013193278200_ref28","doi-asserted-by":"crossref","first-page":"52","DOI":"10.1109\/TMBMC.2016.2633265","article-title":"Inferring biological networks by sparse identification of nonlinear dynamics","volume":"2","author":"Mangan","year":"2016","journal-title":"IEEE Trans Molec Biol Multi-Scale Commun"},{"issue":"173","key":"2022092013193278200_ref29","doi-asserted-by":"crossref","first-page":"20200652","DOI":"10.1098\/rsif.2020.0652","article-title":"Identifiability analysis for stochastic differential equation models in systems biology","volume":"17","author":"Browning","year":"2020","journal-title":"J R Soc Interface"},{"issue":"Pt B","key":"2022092013193278200_ref30","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.compbiolchem.2015.04.012","article-title":"Reconstructing gene regulatory networks from knock-out data using Gaussian Noise Model and Pearson Correlation Coefficient","volume":"59","author":"Mohamed Salleh","year":"2015","journal-title":"Comput Biol Chem"},{"issue":"18","key":"2022092013193278200_ref31","doi-asserted-by":"crossref","first-page":"3565","DOI":"10.1093\/bioinformatics\/bth445","article-title":"Discovery of meaningful associations in genomic data using partial correlation coefficients","volume":"20","author":"Fuente","year":"2004","journal-title":"Bioinformatics"},{"issue":"2","key":"2022092013193278200_ref32","doi-asserted-by":"crossref","first-page":"112","DOI":"10.1016\/j.gene.2016.02.015","article-title":"Application of Euclidean distance measurement and principal component analysis for gene identification","volume":"583","author":"Ghosh","year":"2016","journal-title":"Gene"},{"issue":"5","key":"2022092013193278200_ref33","doi-asserted-by":"crossref","first-page":"316","DOI":"10.1111\/opo.12636","article-title":"Should Pearson\u2019s correlation coefficient be avoided?","volume":"39","author":"Armstrong","year":"2019","journal-title":"Ophthal Physiol Opt: J Br College Ophthal Optic"},{"issue":"11","key":"2022092013193278200_ref34","doi-asserted-by":"crossref","first-page":"693","DOI":"10.1038\/nrg.2016.98","article-title":"Transition states and cell fate decisions in epigenetic landscapes","volume":"17","author":"Moris","year":"2016","journal-title":"Nat Rev Genet"},{"issue":"3","key":"2022092013193278200_ref35","doi-asserted-by":"crossref","first-page":"251","DOI":"10.1016\/j.cels.2017.08.014","article-title":"Gene regulatory network inference from single-cell data using multivariate information measures","volume":"5","author":"Chan","year":"2017","journal-title":"Cell Syst"},{"issue":"1","key":"2022092013193278200_ref36","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1186\/s12976-019-0103-7","article-title":"Gene regulatory networks on transfer entropy (GRNTE): a novel approach to reconstruct gene regulatory interactions applied to a case study for the plant pathogen Phytophthora infestans","volume":"16","author":"Castro","year":"2019","journal-title":"Theor Biol Med Model"},{"key":"2022092013193278200_ref37","first-page":"418","article-title":"Mutual information relevance networks: functional genomic clustering using pairwise entropy measurements","volume":"5","author":"Butte","year":"2000","journal-title":"Pac Symp Biocomput"},{"issue":"1","key":"2022092013193278200_ref38","doi-asserted-by":"crossref","first-page":"e8","DOI":"10.1371\/journal.pbio.0050008","article-title":"Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles","volume":"5","author":"Faith","year":"2007","journal-title":"PLoS Biol"},{"issue":"Suppl 1","key":"2022092013193278200_ref39","doi-asserted-by":"crossref","first-page":"S7","DOI":"10.1186\/1471-2105-7-S1-S7","article-title":"ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context","volume":"7","author":"Margolin","year":"2006","journal-title":"BMC Bioinform"},{"issue":"1","key":"2022092013193278200_ref40","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1186\/1471-2105-9-461","article-title":"minet: a R\/bioconductor package for inferring large transcriptional networks using mutual information","volume":"9","author":"Meyer","year":"2008","journal-title":"BMC Bioinform"},{"key":"2022092013193278200_ref41","volume-title":"International Conference on Electrical Engineering and Information & Communication Technology (iCEEiCT2015)","author":"Akhand","year":"2015"},{"issue":"11","key":"2022092013193278200_ref42","doi-asserted-by":"crossref","first-page":"e0166115","DOI":"10.1371\/journal.pone.0166115","article-title":"Gene regulatory network inferences using a maximum-relevance and maximum-significance strategy","volume":"11","author":"Liu","year":"2016","journal-title":"PLoS One"},{"issue":"37","key":"2022092013193278200_ref43","doi-asserted-by":"crossref","first-page":"23222","DOI":"10.1039\/C7RA01557G","article-title":"Improving gene regulatory network structure using redundancy reduction in the MRNET algorithm","volume":"7","author":"Liu","year":"2017","journal-title":"RSC Adv"},{"issue":"5","key":"2022092013193278200_ref44","doi-asserted-by":"crossref","first-page":"e96732","DOI":"10.1371\/journal.pone.0096732","article-title":"MIDER: network inference with mutual information distance and entropy reduction","volume":"9","author":"Villaverde","year":"2014","journal-title":"PLoS One"},{"issue":"5","key":"2022092013193278200_ref45","doi-asserted-by":"crossref","first-page":"e31","DOI":"10.1093\/nar\/gku1315","article-title":"Conditional mutual inclusive information enables accurate quantification of associations in gene regulatory networks","volume":"43","author":"Zhang","year":"2015","journal-title":"Nucleic Acids Res"},{"issue":"18","key":"2022092013193278200_ref46","doi-asserted-by":"crossref","first-page":"5130","DOI":"10.1073\/pnas.1522586113","article-title":"Part mutual information for quantifying direct associations in networks","volume":"113","author":"Zhao","year":"2016","journal-title":"Proc Natl Acad Sci USA"},{"key":"2022092013193278200_ref47","doi-asserted-by":"crossref","first-page":"591461","DOI":"10.3389\/fgene.2020.591461","article-title":"RWRNET: a gene regulatory network inference algorithm using random walk with restart","volume":"11","author":"Liu","year":"2020","journal-title":"Front Genet"},{"issue":"6","key":"2022092013193278200_ref48","doi-asserted-by":"crossref","DOI":"10.1093\/bib\/bbab109","article-title":"An effective self-supervised framework for learning expressive molecular global representations to drug discovery","volume":"22","author":"Li","year":"2021","journal-title":"Brief Bioinform"},{"issue":"1","key":"2022092013193278200_ref49","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1038\/ng881","article-title":"Network motifs in the transcriptional regulation network of Escherichia coli","volume":"31","author":"Shen-Orr","year":"2002","journal-title":"Nat Genet"},{"issue":"5594","key":"2022092013193278200_ref50","doi-asserted-by":"crossref","first-page":"824","DOI":"10.1126\/science.298.5594.824","article-title":"Network motifs: simple building blocks of complex networks","volume":"298","author":"Milo","year":"2002","journal-title":"Science"},{"issue":"2","key":"2022092013193278200_ref51","doi-asserted-by":"crossref","first-page":"442","DOI":"10.1016\/0005-2795(75)90109-9","article-title":"Comparison of the predicted and observed secondary structure of T4 phage lysozyme","volume":"405","author":"Matthews","year":"1975","journal-title":"Biochim Biophys Acta"},{"issue":"6","key":"2022092013193278200_ref52","doi-asserted-by":"crossref","first-page":"e0177678","DOI":"10.1371\/journal.pone.0177678","article-title":"Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric","volume":"12","author":"Boughorbel","year":"2017","journal-title":"PLoS One"},{"issue":"1","key":"2022092013193278200_ref53","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1063\/1.1336499","article-title":"On the deduction of chemical reaction pathways from measurements of time series of concentrations","volume":"11","author":"Samoilov","year":"2001","journal-title":"Chaos"},{"issue":"16","key":"2022092013193278200_ref54","doi-asserted-by":"crossref","first-page":"10555","DOI":"10.1073\/pnas.152046799","article-title":"Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics","volume":"99","author":"Ronen","year":"2002","journal-title":"Proc Natl Acad Sci USA"}],"container-title":["Briefings in Bioinformatics"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/academic.oup.com\/bib\/article-pdf\/23\/5\/bbac156\/45937000\/bbac156.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"syndication"},{"URL":"https:\/\/academic.oup.com\/bib\/article-pdf\/23\/5\/bbac156\/45937000\/bbac156.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,2,1]],"date-time":"2023-02-01T23:32:09Z","timestamp":1675294329000},"score":1,"resource":{"primary":{"URL":"https:\/\/academic.oup.com\/bib\/article\/doi\/10.1093\/bib\/bbac156\/6585392"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,5,13]]},"references-count":54,"journal-issue":{"issue":"5","published-print":{"date-parts":[[2022,9,20]]}},"URL":"https:\/\/doi.org\/10.1093\/bib\/bbac156","relation":{},"ISSN":["1467-5463","1477-4054"],"issn-type":[{"value":"1467-5463","type":"print"},{"value":"1477-4054","type":"electronic"}],"subject":[],"published-other":{"date-parts":[[2022,9]]},"published":{"date-parts":[[2022,5,13]]}}}