{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,3,25]],"date-time":"2024-03-25T08:57:05Z","timestamp":1711357025787},"reference-count":27,"publisher":"American Mathematical Society (AMS)","issue":"214","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Math. Comp."],"abstract":"
In this paper, we construct a general theory of a priori<\/italic> error estimates for scalar conservation laws by suitably modifying the original Kuznetsov approximation theory. As a first application of this general technique, we show that error estimates for conservation laws can be obtained without having to use explicitly any<\/italic> regularity properties of the approximate solution. Thus, we obtain optimal error estimates for the Engquist-Osher scheme without using the fact (i) that the solution is uniformly bounded, (ii) that the scheme is total variation diminishing, and (iii) that the discrete semigroup associated with the scheme has the L\n\n \n \n \n \n 1<\/mml:mn>\n <\/mml:mrow>\n <\/mml:msup>\n ^{1}<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>-contraction property, which guarantees an upper bound for the modulus of continuity in time of the approximate solution.<\/p>","DOI":"10.1090\/s0025-5718-96-00701-6","type":"journal-article","created":{"date-parts":[[2002,7,26]],"date-time":"2002-07-26T22:14:44Z","timestamp":1027721684000},"page":"533-573","source":"Crossref","is-referenced-by-count":37,"title":["A priori error estimates for numerical methods for scalar conservation laws. Part I: The general approach"],"prefix":"10.1090","volume":"65","author":[{"given":"Bernardo","family":"Cockburn","sequence":"first","affiliation":[]},{"given":"Pierre-Alain","family":"Gremaud","sequence":"additional","affiliation":[]}],"member":"14","published-online":{"date-parts":[[1996]]},"reference":[{"issue":"6","key":"1","doi-asserted-by":"publisher","first-page":"1325","DOI":"10.1137\/0726077","article-title":"Quasimonotone schemes for scalar conservation laws. I","volume":"26","author":"Cockburn, Bernardo","year":"1989","journal-title":"SIAM J. Numer. Anal.","ISSN":"http:\/\/id.crossref.org\/issn\/0036-1429","issn-type":"print"},{"issue":"1","key":"2","doi-asserted-by":"publisher","first-page":"247","DOI":"10.1137\/0727017","article-title":"Quasimonotone schemes for scalar conservation laws. II, III","volume":"27","author":"Cockburn, Bernardo","year":"1990","journal-title":"SIAM J. Numer. Anal.","ISSN":"http:\/\/id.crossref.org\/issn\/0036-1429","issn-type":"print"},{"issue":"1","key":"3","doi-asserted-by":"publisher","first-page":"247","DOI":"10.1137\/0727017","article-title":"Quasimonotone schemes for scalar conservation laws. II, III","volume":"27","author":"Cockburn, Bernardo","year":"1990","journal-title":"SIAM J. Numer. Anal.","ISSN":"http:\/\/id.crossref.org\/issn\/0036-1429","issn-type":"print"},{"key":"4","doi-asserted-by":"crossref","unstructured":"B. Cockburn, F. Coquel, and P. LeFloch, Convergence of the finite volume method for multidimensional conservation laws, SIAM J. Numer. Anal. 32 (1995), 687\u2013705.","DOI":"10.1137\/0732032"},{"issue":"207","key":"5","doi-asserted-by":"publisher","first-page":"77","DOI":"10.2307\/2153563","article-title":"An error estimate for finite volume methods for multidimensional conservation laws","volume":"63","author":"Cockburn, Bernardo","year":"1994","journal-title":"Math. Comp.","ISSN":"http:\/\/id.crossref.org\/issn\/0025-5718","issn-type":"print"},{"key":"6","unstructured":"B. Cockburn and H. Gau, A posteriori error estimates for general numerical schemes for conservations laws, Mat. Apl. Comput. 14 (1995), 37\u201347."},{"key":"7","unstructured":"B. Cockburn and P.-A. Gremaud, An error estimate for finite element methods for conservations laws, University of Minnesota Supercomputer Institute Research Report 93-128, SIAM J. Numer. Anal. (to appear)."},{"issue":"195","key":"8","doi-asserted-by":"publisher","first-page":"169","DOI":"10.2307\/2938668","article-title":"Convergence of finite difference schemes for conservation laws in several space dimensions: the corrected antidiffusive flux approach","volume":"57","author":"Coquel, Fr\u00e9d\u00e9ric","year":"1991","journal-title":"Math. Comp.","ISSN":"http:\/\/id.crossref.org\/issn\/0025-5718","issn-type":"print"},{"issue":"3","key":"9","doi-asserted-by":"publisher","first-page":"223","DOI":"10.1007\/BF00752112","article-title":"Measure-valued solutions to conservation laws","volume":"88","author":"DiPerna, Ronald J.","year":"1985","journal-title":"Arch. Rational Mech. Anal.","ISSN":"http:\/\/id.crossref.org\/issn\/0003-9527","issn-type":"print"},{"issue":"154","key":"10","doi-asserted-by":"publisher","first-page":"321","DOI":"10.2307\/2007646","article-title":"One-sided difference approximations for nonlinear conservation laws","volume":"36","author":"Engquist, Bj\u00f6rn","year":"1981","journal-title":"Math. Comp.","ISSN":"http:\/\/id.crossref.org\/issn\/0025-5718","issn-type":"print"},{"issue":"4","key":"11","doi-asserted-by":"publisher","first-page":"413","DOI":"10.1137\/1024099","article-title":"The significance of the stability of difference schemes in different \ud835\udc59^{\ud835\udc5d}-spaces","volume":"24","author":"Geveci, T.","year":"1982","journal-title":"SIAM Rev.","ISSN":"http:\/\/id.crossref.org\/issn\/0036-1445","issn-type":"print"},{"issue":"3","key":"12","doi-asserted-by":"publisher","first-page":"297","DOI":"10.1002\/cpa.3160290305","article-title":"On finite-difference approximations and entropy conditions for shocks","volume":"29","author":"Harten, A.","year":"1976","journal-title":"Comm. Pure Appl. Math.","ISSN":"http:\/\/id.crossref.org\/issn\/0010-3640","issn-type":"print"},{"issue":"2","key":"13","doi-asserted-by":"publisher","first-page":"324","DOI":"10.1137\/0731017","article-title":"Convergence of upwind finite volume schemes for scalar conservation laws in two dimensions","volume":"31","author":"Kr\u00f6ner, Dietmar","year":"1994","journal-title":"SIAM J. Numer. Anal.","ISSN":"http:\/\/id.crossref.org\/issn\/0036-1429","issn-type":"print"},{"key":"14","first-page":"228","article-title":"First order quasilinear equations with several independent variables.","volume":"81 (123)","author":"Kru\u017ekov, S. N.","year":"1970","journal-title":"Mat. Sb. (N.S.)"},{"issue":"6","key":"15","first-page":"1489","article-title":"The accuracy of certain approximate methods for the computation of weak solutions of a first order quasilinear equation","volume":"16","author":"Kuznecov, N. N.","year":"1976","journal-title":"\\v{Z}. Vy\\v{c}isl. Mat i Mat. Fiz.","ISSN":"http:\/\/id.crossref.org\/issn\/0044-4669","issn-type":"print"},{"issue":"1","key":"16","doi-asserted-by":"publisher","first-page":"180","DOI":"10.1137\/0722012","article-title":"A stable adaptive numerical scheme for hyperbolic conservation laws","volume":"22","author":"Lucier, Bradley J.","year":"1985","journal-title":"SIAM J. Numer. Anal.","ISSN":"http:\/\/id.crossref.org\/issn\/0036-1429","issn-type":"print"},{"issue":"6","key":"17","doi-asserted-by":"publisher","first-page":"1074","DOI":"10.1137\/0722064","article-title":"Error bounds for the methods of Glimm, Godunov and LeVeque","volume":"22","author":"Lucier, Bradley J.","year":"1985","journal-title":"SIAM J. Numer. Anal.","ISSN":"http:\/\/id.crossref.org\/issn\/0036-1429","issn-type":"print"},{"issue":"175","key":"18","doi-asserted-by":"publisher","first-page":"19","DOI":"10.2307\/2008080","article-title":"On nonlocal monotone difference schemes for scalar conservation laws","volume":"47","author":"Lucier, Bradley J.","year":"1986","journal-title":"Math. Comp.","ISSN":"http:\/\/id.crossref.org\/issn\/0025-5718","issn-type":"print"},{"issue":"173","key":"19","doi-asserted-by":"publisher","first-page":"59","DOI":"10.2307\/2008214","article-title":"A moving mesh numerical method for hyperbolic conservation laws","volume":"46","author":"Lucier, Bradley J.","year":"1986","journal-title":"Math. Comp.","ISSN":"http:\/\/id.crossref.org\/issn\/0025-5718","issn-type":"print"},{"issue":"2","key":"20","doi-asserted-by":"publisher","first-page":"217","DOI":"10.1137\/0721016","article-title":"Riemann solvers, the entropy condition, and difference approximations","volume":"21","author":"Osher, Stanley","year":"1984","journal-title":"SIAM J. Numer. Anal.","ISSN":"http:\/\/id.crossref.org\/issn\/0036-1429","issn-type":"print"},{"issue":"2","key":"21","doi-asserted-by":"publisher","first-page":"295","DOI":"10.1137\/0519022","article-title":"The Neumann problem for nonlinear second order singular perturbation problems","volume":"19","author":"Perthame, Beno\u00eet","year":"1988","journal-title":"SIAM J. Math. Anal.","ISSN":"http:\/\/id.crossref.org\/issn\/0036-1410","issn-type":"print"},{"issue":"161","key":"22","doi-asserted-by":"publisher","first-page":"91","DOI":"10.2307\/2007364","article-title":"On convergence of monotone finite difference schemes with variable spatial differencing","volume":"40","author":"Sanders, Richard","year":"1983","journal-title":"Math. Comp.","ISSN":"http:\/\/id.crossref.org\/issn\/0025-5718","issn-type":"print"},{"issue":"188","key":"23","doi-asserted-by":"publisher","first-page":"527","DOI":"10.2307\/2008718","article-title":"Convergence of a shock-capturing streamline diffusion finite element method for a scalar conservation law in two space dimensions","volume":"53","author":"Szepessy, Anders","year":"1989","journal-title":"Math. Comp.","ISSN":"http:\/\/id.crossref.org\/issn\/0025-5718","issn-type":"print"},{"issue":"6","key":"24","doi-asserted-by":"publisher","first-page":"749","DOI":"10.1051\/m2an\/1991250607491","article-title":"Convergence of a streamline diffusion finite element method for scalar conservation laws with boundary conditions","volume":"25","author":"Szepessy, A.","year":"1991","journal-title":"RAIRO Mod\\'{e}l. Math. Anal. Num\\'{e}r.","ISSN":"http:\/\/id.crossref.org\/issn\/0764-583X","issn-type":"print"},{"issue":"9-10","key":"25","doi-asserted-by":"publisher","first-page":"1631","DOI":"10.1080\/03605309308820988","article-title":"On the piecewise smoothness of entropy solutions to scalar conservation laws","volume":"18","author":"Tadmor, Eitan","year":"1993","journal-title":"Comm. Partial Differential Equations","ISSN":"http:\/\/id.crossref.org\/issn\/0360-5302","issn-type":"print"},{"key":"26","doi-asserted-by":"crossref","unstructured":"J.-P. Vila, Convergence and error estimates in finite volume schemes for general multidimensional scalar conservation laws, Model. Math. Anal. Numer. 28 (1994), 267\u2013295.","DOI":"10.1051\/m2an\/1994280302671"},{"key":"27","first-page":"374","article-title":"The Cauchy problem for second order quasilinear degenerate parabolic equations","volume":"78 (120)","author":"Vol\u2032pert, A. I.","year":"1969","journal-title":"Mat. Sb. (N.S.)"}],"container-title":["Mathematics of Computation"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/www.ams.org\/mcom\/1996-65-214\/S0025-5718-96-00701-6\/S0025-5718-96-00701-6.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"},{"URL":"https:\/\/www.ams.org\/mcom\/1996-65-214\/S0025-5718-96-00701-6\/S0025-5718-96-00701-6.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,11,2]],"date-time":"2021-11-02T23:00:15Z","timestamp":1635894015000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.ams.org\/mcom\/1996-65-214\/S0025-5718-96-00701-6\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[1996]]},"references-count":27,"journal-issue":{"issue":"214","published-print":{"date-parts":[[1996,4]]}},"alternative-id":["S0025-5718-96-00701-6"],"URL":"https:\/\/doi.org\/10.1090\/s0025-5718-96-00701-6","archive":["CLOCKSS","Portico"],"relation":{},"ISSN":["0025-5718","1088-6842"],"issn-type":[{"value":"0025-5718","type":"print"},{"value":"1088-6842","type":"electronic"}],"subject":[],"published":{"date-parts":[[1996]]}}}