{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,11]],"date-time":"2024-07-11T10:36:08Z","timestamp":1720694168160},"reference-count":47,"publisher":"American Mathematical Society (AMS)","issue":"268","license":[{"start":{"date-parts":[[2010,6,8]],"date-time":"2010-06-08T00:00:00Z","timestamp":1275955200000},"content-version":"am","delay-in-days":365,"URL":"https:\/\/www.ams.org\/publications\/copyright-and-permissions"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Math. Comp."],"abstract":"
We describe theorems and computational methods for verifying the Birch and Swinnerton-Dyer conjectural formula for specific elliptic curves over\u00a0\n\n \n \n Q<\/mml:mi>\n <\/mml:mrow>\n \\mathbb {Q}<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula> of analytic ranks \n\n \n 0<\/mml:mn>\n 0<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula> and \n\n \n 1<\/mml:mn>\n 1<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>. We apply our techniques to show that if \n\n \n E<\/mml:mi>\n E<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula> is a non-CM elliptic curve over\u00a0\n\n \n \n Q<\/mml:mi>\n <\/mml:mrow>\n \\mathbb {Q}<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula> of conductor \n\n \n \n \u2264<\/mml:mo>\n 1000<\/mml:mn>\n <\/mml:mrow>\n \\leq 1000<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula> and rank \n\n \n 0<\/mml:mn>\n 0<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula> or \n\n \n 1<\/mml:mn>\n 1<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>, then the Birch and Swinnerton-Dyer conjectural formula for the leading coefficient of the \n\n \n L<\/mml:mi>\n L<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>-series is true for\u00a0\n\n \n E<\/mml:mi>\n E<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>, up to odd primes that divide either Tamagawa numbers of\u00a0\n\n \n E<\/mml:mi>\n E<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula> or the degree of some rational cyclic isogeny with domain\u00a0\n\n \n E<\/mml:mi>\n E<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>. Since the rank part of the Birch and Swinnerton-Dyer conjecture is a theorem for curves of analytic rank \n\n \n 0<\/mml:mn>\n 0<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula> or \n\n \n 1<\/mml:mn>\n 1<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>, this completely verifies the full conjecture for these curves up to the primes excluded above.<\/p>","DOI":"10.1090\/s0025-5718-09-02253-4","type":"journal-article","created":{"date-parts":[[2009,6,30]],"date-time":"2009-06-30T14:39:02Z","timestamp":1246372742000},"page":"2397-2425","source":"Crossref","is-referenced-by-count":10,"title":["Computational verification of the Birch and Swinnerton-Dyer conjecture for individual elliptic curves"],"prefix":"10.1090","volume":"78","author":[{"given":"Grigor","family":"Grigorov","sequence":"first","affiliation":[]},{"given":"Andrei","family":"Jorza","sequence":"additional","affiliation":[]},{"given":"Stefan","family":"Patrikis","sequence":"additional","affiliation":[]},{"given":"William","family":"Stein","sequence":"additional","affiliation":[]},{"given":"Corina","family":"Tarni\u0163\u01ce","sequence":"additional","affiliation":[]}],"member":"14","published-online":{"date-parts":[[2009,6,8]]},"reference":[{"key":"1","unstructured":"[ABC] B. Allombert, K. Belabas, H. Cohen, X. Roblot, and I. Zakharevitch, PARI\/GP, \\url{http:\/\/pari.math.u-bordeaux.fr\/}."},{"key":"2","unstructured":"[ARS05] A. Agashe, K. A. Ribet, and W. A. Stein, The Manin constant, congruence primes, and the modular degree, Preprint, \\url{http:\/\/www.williamstein.org\/papers\/manin-agashe\/}, With an appendix by J. Cremona (2005)."},{"issue":"249","key":"3","doi-asserted-by":"publisher","first-page":"455","DOI":"10.1090\/S0025-5718-04-01644-8","article-title":"Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero","volume":"74","author":"Agashe, Amod","year":"2005","journal-title":"Math. Comp.","ISSN":"http:\/\/id.crossref.org\/issn\/0025-5718","issn-type":"print"},{"issue":"4","key":"4","doi-asserted-by":"publisher","first-page":"843","DOI":"10.1090\/S0894-0347-01-00370-8","article-title":"On the modularity of elliptic curves over \ud835\udc10: wild 3-adic exercises","volume":"14","author":"Breuil, Christophe","year":"2001","journal-title":"J. Amer. Math. Soc.","ISSN":"http:\/\/id.crossref.org\/issn\/0894-0347","issn-type":"print"},{"issue":"3-4","key":"5","doi-asserted-by":"publisher","first-page":"235","DOI":"10.1006\/jsco.1996.0125","article-title":"The Magma algebra system. I. The user language","volume":"24","author":"Bosma, Wieb","year":"1997","journal-title":"J. Symbolic Comput.","ISSN":"http:\/\/id.crossref.org\/issn\/0747-7171","issn-type":"print"},{"issue":"3","key":"6","doi-asserted-by":"publisher","first-page":"543","DOI":"10.1007\/BF01233440","article-title":"Nonvanishing theorems for \ud835\udc3f-functions of modular forms and their derivatives","volume":"102","author":"Bump, Daniel","year":"1990","journal-title":"Invent. Math.","ISSN":"http:\/\/id.crossref.org\/issn\/0020-9910","issn-type":"print"},{"key":"7","doi-asserted-by":"publisher","first-page":"259","DOI":"10.1112\/plms\/s3-12.1.259","article-title":"Arithmetic on curves of genus 1. III. The Tate-\u0160afarevi\u010d and Selmer groups","volume":"12","author":"Cassels, J. W. S.","year":"1962","journal-title":"Proc. London Math. Soc. (3)","ISSN":"http:\/\/id.crossref.org\/issn\/0024-6115","issn-type":"print"},{"key":"8","doi-asserted-by":"publisher","first-page":"180","DOI":"10.1515\/crll.1965.217.180","article-title":"Arithmetic on curves of genus 1. VIII. On conjectures of Birch and Swinnerton-Dyer","volume":"217","author":"Cassels, J. W. S.","year":"1965","journal-title":"J. Reine Angew. Math.","ISSN":"http:\/\/id.crossref.org\/issn\/0075-4102","issn-type":"print"},{"key":"9","unstructured":"[Cha03] Byungchul Cha, Vanishing of Some Cohomology Groups and Bounds for the Shafarevich-Tate Groups of Elliptic Curves, Johns-Hopkins Ph.D. Thesis (2003)."},{"issue":"1","key":"10","doi-asserted-by":"publisher","first-page":"154","DOI":"10.1016\/j.jnt.2004.08.009","article-title":"Vanishing of some cohomology groups and bounds for the Shafarevich-Tate groups of elliptic curves","volume":"111","author":"Cha, Byungchul","year":"2005","journal-title":"J. Number Theory","ISSN":"http:\/\/id.crossref.org\/issn\/0022-314X","issn-type":"print"},{"issue":"1","key":"11","doi-asserted-by":"publisher","first-page":"16","DOI":"10.4153\/CMB-2005-002-x","article-title":"On the surjectivity of the Galois representations associated to non-CM elliptic curves","volume":"48","author":"Cojocaru, Alina Carmen","year":"2005","journal-title":"Canad. Math. Bull.","ISSN":"http:\/\/id.crossref.org\/issn\/0008-4395","issn-type":"print"},{"issue":"1","key":"12","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1080\/10586458.2000.10504633","article-title":"Visualizing elements in the Shafarevich-Tate group","volume":"9","author":"Cremona, John E.","year":"2000","journal-title":"Experiment. Math.","ISSN":"http:\/\/id.crossref.org\/issn\/1058-6458","issn-type":"print"},{"key":"13","series-title":"Graduate Texts in Mathematics","isbn-type":"print","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-662-02945-9","volume-title":"A course in computational algebraic number theory","volume":"138","author":"Cohen, Henri","year":"1993","ISBN":"http:\/\/id.crossref.org\/isbn\/3540556400"},{"issue":"1","key":"14","doi-asserted-by":"publisher","first-page":"42","DOI":"10.1016\/j.jnt.2005.03.001","article-title":"Height difference bounds for elliptic curves over number fields","volume":"116","author":"Cremona, J. E.","year":"2006","journal-title":"J. Number Theory","ISSN":"http:\/\/id.crossref.org\/issn\/0022-314X","issn-type":"print"},{"key":"15","unstructured":"[Crea] J. E. Cremona, Elliptic curves of conductor \u226425000, \\url{http:\/\/www.maths.nott.ac.uk\/personal\/jec\/ftp\/data\/}."},{"key":"16","unstructured":"[Creb] \\bysame, mwrank (computer software), \\url{http:\/\/www.maths.nott.ac.uk\/personal\/jec\/mwrank\/}"},{"key":"17","isbn-type":"print","volume-title":"Algorithms for modular elliptic curves","author":"Cremona, J. E.","year":"1997","ISBN":"http:\/\/id.crossref.org\/isbn\/0521598206","edition":"2"},{"key":"18","first-page":"25","article-title":"On the Manin constants of modular elliptic curves","author":"Edixhoven, Bas","year":"1991"},{"key":"19","unstructured":"[Gri05] G. Grigorov, Kato\u2019s Euler System and the Main Conjecture, Harvard Ph.D. Thesis (2005)."},{"key":"20","doi-asserted-by":"publisher","first-page":"235","DOI":"10.1017\/CBO9780511526053.009","article-title":"Kolyvagin\u2019s work on modular elliptic curves","author":"Gross, Benedict H.","year":"1991"},{"issue":"2","key":"21","doi-asserted-by":"publisher","first-page":"225","DOI":"10.1007\/BF01388809","article-title":"Heegner points and derivatives of \ud835\udc3f-series","volume":"84","author":"Gross, Benedict H.","year":"1986","journal-title":"Invent. Math.","ISSN":"http:\/\/id.crossref.org\/issn\/0020-9910","issn-type":"print"},{"key":"22","unstructured":"[Jor05] A. Jorza, The Birch and Swinnerton-Dyer Conjecture for Abelian Varieties over Number Fields, Harvard University Senior Thesis (2005)."},{"issue":"295","key":"23","first-page":"ix, 117--290","article-title":"\ud835\udc5d-adic Hodge theory and values of zeta functions of modular forms","author":"Kato, Kazuya","year":"2004","journal-title":"Ast\\'{e}risque","ISSN":"http:\/\/id.crossref.org\/issn\/0303-1179","issn-type":"print"},{"issue":"3","key":"24","doi-asserted-by":"publisher","first-page":"522","DOI":"10.1070\/IM1989v032n03ABEH000779","article-title":"Finiteness of \ud835\udc38(\ud835\udc44) and SH(\ud835\udc38,\ud835\udc44) for a subclass of Weil curves","volume":"52","author":"Kolyvagin, V. A.","year":"1988","journal-title":"Izv. Akad. Nauk SSSR Ser. Mat.","ISSN":"http:\/\/id.crossref.org\/issn\/0373-2436","issn-type":"print"},{"key":"25","first-page":"435","article-title":"Euler systems","author":"Kolyvagin, V. A.","year":"1990"},{"key":"26","first-page":"429","article-title":"On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves","author":"Kolyvagin, Victor Alecsandrovich","year":"1991"},{"key":"27","series-title":"Encyclopaedia of Mathematical Sciences","isbn-type":"print","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-58227-1","volume-title":"Number theory. III","volume":"60","author":"Lang, Serge","year":"1991","ISBN":"http:\/\/id.crossref.org\/isbn\/3540530045"},{"key":"28","first-page":"19","article-title":"Parabolic points and zeta functions of modular curves","volume":"36","author":"Manin, Ju. I.","year":"1972","journal-title":"Izv. Akad. Nauk SSSR Ser. Mat.","ISSN":"http:\/\/id.crossref.org\/issn\/0373-2436","issn-type":"print"},{"issue":"2","key":"29","doi-asserted-by":"publisher","first-page":"415","DOI":"10.1016\/S0022-314X(02)00078-1","article-title":"Finite \u039b-submodules of Selmer groups of abelian varieties over cyclotomic \u2124_{\ud835\udd61}-extensions","volume":"99","author":"Matsuno, Kazuo","year":"2003","journal-title":"J. Number Theory","ISSN":"http:\/\/id.crossref.org\/issn\/0022-314X","issn-type":"print"},{"issue":"2","key":"30","doi-asserted-by":"publisher","first-page":"129","DOI":"10.1007\/BF01390348","article-title":"Rational isogenies of prime degree (with an appendix by D. Goldfeld)","volume":"44","author":"Mazur, B.","year":"1978","journal-title":"Invent. Math.","ISSN":"http:\/\/id.crossref.org\/issn\/0020-9910","issn-type":"print"},{"key":"31","doi-asserted-by":"publisher","first-page":"295","DOI":"10.1017\/CBO9780511526053.012","article-title":"Kolyvagin\u2019s work on Shafarevich-Tate groups","author":"McCallum, William G.","year":"1991"},{"key":"32","series-title":"Perspectives in Mathematics","isbn-type":"print","volume-title":"Arithmetic duality theorems","volume":"1","author":"Milne, J. S.","year":"1986","ISBN":"http:\/\/id.crossref.org\/isbn\/0124980406"},{"issue":"3","key":"33","doi-asserted-by":"publisher","first-page":"447","DOI":"10.2307\/2944316","article-title":"Mean values of derivatives of modular \ud835\udc3f-series","volume":"133","author":"Murty, M. Ram","year":"1991","journal-title":"Ann. of Math. (2)","ISSN":"http:\/\/id.crossref.org\/issn\/0003-486X","issn-type":"print"},{"issue":"799","key":"34","doi-asserted-by":"publisher","first-page":"viii+96","DOI":"10.1090\/memo\/0799","article-title":"Kolyvagin systems","volume":"168","author":"Mazur, Barry","year":"2004","journal-title":"Mem. Amer. Math. Soc.","ISSN":"http:\/\/id.crossref.org\/issn\/0065-9266","issn-type":"print"},{"issue":"3","key":"35","doi-asserted-by":"publisher","first-page":"1109","DOI":"10.2307\/121064","article-title":"The Cassels-Tate pairing on polarized abelian varieties","volume":"150","author":"Poonen, Bjorn","year":"1999","journal-title":"Ann. of Math. (2)","ISSN":"http:\/\/id.crossref.org\/issn\/0003-486X","issn-type":"print"},{"key":"36","doi-asserted-by":"publisher","first-page":"351","DOI":"10.1017\/CBO9780511662010.009","article-title":"Euler systems and modular elliptic curves","author":"Rubin, Karl","year":"1998"},{"issue":"4","key":"37","doi-asserted-by":"publisher","first-page":"259","DOI":"10.1007\/BF01405086","article-title":"Propri\u00e9t\u00e9s galoisiennes des points d\u2019ordre fini des courbes elliptiques","volume":"15","author":"Serre, Jean-Pierre","year":"1972","journal-title":"Invent. Math.","ISSN":"http:\/\/id.crossref.org\/issn\/0020-9910","issn-type":"print"},{"key":"38","volume-title":"Abelian $l$-adic representations and elliptic curves","author":"Serre, Jean-Pierre","year":"1968"},{"key":"39","series-title":"Graduate Texts in Mathematics","isbn-type":"print","doi-asserted-by":"crossref","DOI":"10.1007\/978-1-4757-4252-7","volume-title":"The arithmetic of elliptic curves","volume":"106","author":"Silverman, Joseph H.","year":"1992","ISBN":"http:\/\/id.crossref.org\/isbn\/0387962034"},{"key":"40","unstructured":"[Sage] W. A. Stein, Sage: Open Source Mathematics Software, \\url{http:\/\/www.sagemath.org}."},{"key":"41","doi-asserted-by":"publisher","first-page":"139","DOI":"10.1515\/crll.2002.047","article-title":"There are genus one curves over \u211a of every odd index","volume":"547","author":"Stein, William A.","year":"2002","journal-title":"J. Reine Angew. Math.","ISSN":"http:\/\/id.crossref.org\/issn\/0075-4102","issn-type":"print"},{"key":"42","unstructured":"[SW08] W. A. Stein and C. Wuthrich, Computations About Tate-Shafarevich Groups Using Iwasawa Theory, in preparation (2008)."},{"key":"43","unstructured":"[Sto05] M. Stoll, Explicit 3-descent in Magma \\url{http:\/\/www.faculty.iu-bremen.de\/stoll\/magma\/explicit-3descent\/}."},{"issue":"2","key":"44","first-page":"121","article-title":"Quelques propri\u00e9t\u00e9s arithm\u00e9tiques de certaines formes automorphes sur \ud835\udc3a\ud835\udc3f(2)","volume":"54","author":"Waldspurger, J.-L.","year":"1985","journal-title":"Compositio Math.","ISSN":"http:\/\/id.crossref.org\/issn\/0010-437X","issn-type":"print"},{"issue":"3","key":"45","doi-asserted-by":"publisher","first-page":"443","DOI":"10.2307\/2118559","article-title":"Modular elliptic curves and Fermat\u2019s last theorem","volume":"141","author":"Wiles, Andrew","year":"1995","journal-title":"Ann. of Math. (2)","ISSN":"http:\/\/id.crossref.org\/issn\/0003-486X","issn-type":"print"},{"key":"46","unstructured":"[Wil00] \\bysame, The Birch and Swinnerton-Dyer Conjecture, \\url{http:\/\/www.claymath.org\/prize_{p}roblems\/birchsd.htm}."},{"key":"47","doi-asserted-by":"publisher","first-page":"191","DOI":"10.1017\/CBO9780511756375.008","article-title":"Gross-Zagier formula for \ud835\udc3a\ud835\udc3f(2). II","author":"Zhang, Shou-Wu","year":"2004"}],"container-title":["Mathematics of Computation"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/www.ams.org\/mcom\/2009-78-268\/S0025-5718-09-02253-4\/S0025-5718-09-02253-4.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"},{"URL":"https:\/\/www.ams.org\/mcom\/2009-78-268\/S0025-5718-09-02253-4\/S0025-5718-09-02253-4.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,7,30]],"date-time":"2021-07-30T03:42:19Z","timestamp":1627616539000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.ams.org\/mcom\/2009-78-268\/S0025-5718-09-02253-4\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2009,6,8]]},"references-count":47,"journal-issue":{"issue":"268","published-print":{"date-parts":[[2009,10]]}},"alternative-id":["S0025-5718-09-02253-4"],"URL":"https:\/\/doi.org\/10.1090\/s0025-5718-09-02253-4","archive":["CLOCKSS","Portico"],"relation":{},"ISSN":["0025-5718","1088-6842"],"issn-type":[{"value":"0025-5718","type":"print"},{"value":"1088-6842","type":"electronic"}],"subject":[],"published":{"date-parts":[[2009,6,8]]}}}