{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,14]],"date-time":"2024-09-14T14:23:26Z","timestamp":1726323806471},"reference-count":18,"publisher":"American Mathematical Society (AMS)","issue":"268","license":[{"start":{"date-parts":[[2010,2,23]],"date-time":"2010-02-23T00:00:00Z","timestamp":1266883200000},"content-version":"am","delay-in-days":365,"URL":"https:\/\/www.ams.org\/publications\/copyright-and-permissions"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Math. Comp."],"abstract":"

We consider an initial value problem for a class of evolution equations incorporating a memory term with a weakly singular kernel bounded by \n\n \n \n C<\/mml:mi>\n (<\/mml:mo>\n t<\/mml:mi>\n \u2212<\/mml:mo>\n s<\/mml:mi>\n \n )<\/mml:mo>\n \n \u03b1<\/mml:mi>\n \u2212<\/mml:mo>\n 1<\/mml:mn>\n <\/mml:mrow>\n <\/mml:msup>\n <\/mml:mrow>\n C(t-s)^{\\alpha -1}<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>, where \n\n \n \n 0<\/mml:mn>\n ><\/mml:mo>\n \u03b1<\/mml:mi>\n ><\/mml:mo>\n 1<\/mml:mn>\n <\/mml:mrow>\n 0>\\alpha >1<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>. For the time discretization we apply the discontinuous Galerkin method using piecewise polynomials of degree at most\u00a0\n\n \n \n q<\/mml:mi>\n \u2212<\/mml:mo>\n 1<\/mml:mn>\n <\/mml:mrow>\n q-1<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>, for \n\n \n \n q<\/mml:mi>\n =<\/mml:mo>\n 1<\/mml:mn>\n <\/mml:mrow>\n q=1<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula> or\u00a0\n\n \n 2<\/mml:mn>\n 2<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>. For the space discretization we use continuous piecewise-linear finite elements. The discrete solution satisfies an error bound of order \n\n \n \n \n k<\/mml:mi>\n q<\/mml:mi>\n <\/mml:msup>\n +<\/mml:mo>\n \n h<\/mml:mi>\n 2<\/mml:mn>\n <\/mml:msup>\n \u2113<\/mml:mi>\n (<\/mml:mo>\n k<\/mml:mi>\n )<\/mml:mo>\n <\/mml:mrow>\n k^q+h^2\\ell (k)<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>, where \n\n \n k<\/mml:mi>\n k<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula> and \n\n \n h<\/mml:mi>\n h<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula> are the mesh sizes in time and space, respectively, and \n\n \n \n \u2113<\/mml:mi>\n (<\/mml:mo>\n k<\/mml:mi>\n )<\/mml:mo>\n =<\/mml:mo>\n max<\/mml:mo>\n (<\/mml:mo>\n 1<\/mml:mn>\n ,<\/mml:mo>\n log<\/mml:mi>\n \u2061<\/mml:mo>\n \n k<\/mml:mi>\n \n \u2212<\/mml:mo>\n 1<\/mml:mn>\n <\/mml:mrow>\n <\/mml:msup>\n )<\/mml:mo>\n <\/mml:mrow>\n \\ell (k)=\\max (1,\\log k^{-1})<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>. In the case\u00a0\n\n \n \n q<\/mml:mi>\n =<\/mml:mo>\n 2<\/mml:mn>\n <\/mml:mrow>\n q=2<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>, we prove a higher convergence rate of order \n\n \n \n \n k<\/mml:mi>\n 3<\/mml:mn>\n <\/mml:msup>\n +<\/mml:mo>\n \n h<\/mml:mi>\n 2<\/mml:mn>\n <\/mml:msup>\n \u2113<\/mml:mi>\n (<\/mml:mo>\n k<\/mml:mi>\n )<\/mml:mo>\n <\/mml:mrow>\n k^3+h^2\\ell (k)<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula> at the nodes of the time mesh. Typically, the partial derivatives of the exact solution are singular at\u00a0\n\n \n \n t<\/mml:mi>\n =<\/mml:mo>\n 0<\/mml:mn>\n <\/mml:mrow>\n t=0<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>, necessitating the use of non-uniform time steps. We compare our theoretical error bounds with the results of numerical computations.<\/p>","DOI":"10.1090\/s0025-5718-09-02234-0","type":"journal-article","created":{"date-parts":[[2009,6,30]],"date-time":"2009-06-30T14:39:02Z","timestamp":1246372742000},"page":"1975-1995","source":"Crossref","is-referenced-by-count":48,"title":["Discontinuous Galerkin method for an evolution equation with a memory term of positive type"],"prefix":"10.1090","volume":"78","author":[{"given":"Kassem","family":"Mustapha","sequence":"first","affiliation":[]},{"given":"William","family":"McLean","sequence":"additional","affiliation":[]}],"member":"14","published-online":{"date-parts":[[2009,2,23]]},"reference":[{"issue":"51-52","key":"1","doi-asserted-by":"publisher","first-page":"5285","DOI":"10.1016\/j.cma.2003.09.001","article-title":"Adaptive discretization of an integro-differential equation with a weakly singular convolution kernel","volume":"192","author":"Adolfsson, Klas","year":"2003","journal-title":"Comput. Methods Appl. Mech. Engrg.","ISSN":"http:\/\/id.crossref.org\/issn\/0045-7825","issn-type":"print"},{"key":"2","series-title":"Lecture Notes in Computational Science and Engineering","isbn-type":"print","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-59721-3","volume-title":"Discontinuous Galerkin methods","volume":"11","year":"2000","ISBN":"http:\/\/id.crossref.org\/isbn\/3540667873"},{"issue":"254","key":"3","doi-asserted-by":"publisher","first-page":"673","DOI":"10.1090\/S0025-5718-06-01788-1","article-title":"Convolution quadrature time discretization of fractional diffusion-wave equations","volume":"75","author":"Cuesta, Eduardo","year":"2006","journal-title":"Math. Comp.","ISSN":"http:\/\/id.crossref.org\/issn\/0025-5718","issn-type":"print"},{"issue":"1","key":"4","doi-asserted-by":"publisher","first-page":"43","DOI":"10.1137\/0728003","article-title":"Adaptive finite element methods for parabolic problems. I. A linear model problem","volume":"28","author":"Eriksson, Kenneth","year":"1991","journal-title":"SIAM J. Numer. Anal.","ISSN":"http:\/\/id.crossref.org\/issn\/0036-1429","issn-type":"print"},{"issue":"4","key":"5","doi-asserted-by":"publisher","first-page":"611","DOI":"10.1051\/m2an\/1985190406111","article-title":"Time discretization of parabolic problems by the discontinuous Galerkin method","volume":"19","author":"Eriksson, Kenneth","year":"1985","journal-title":"RAIRO Mod\\'{e}l. Math. Anal. Num\\'{e}r.","ISSN":"http:\/\/id.crossref.org\/issn\/0764-583X","issn-type":"print"},{"issue":"221","key":"6","doi-asserted-by":"publisher","first-page":"45","DOI":"10.1090\/S0025-5718-98-00883-7","article-title":"Numerical solution of parabolic integro-differential equations by the discontinuous Galerkin method","volume":"67","author":"Larsson, Stig","year":"1998","journal-title":"Math. Comp.","ISSN":"http:\/\/id.crossref.org\/issn\/0025-5718","issn-type":"print"},{"issue":"2-3","key":"7","doi-asserted-by":"publisher","first-page":"289","DOI":"10.1016\/j.apnum.2004.06.015","article-title":"On the numerical inversion of the Laplace transform of certain holomorphic mappings","volume":"51","author":"L\u00f3pez-Fern\u00e1ndez, M.","year":"2004","journal-title":"Appl. Numer. Math.","ISSN":"http:\/\/id.crossref.org\/issn\/0168-9274","issn-type":"print"},{"issue":"3","key":"8","doi-asserted-by":"publisher","first-page":"1332","DOI":"10.1137\/050629653","article-title":"A spectral order method for inverting sectorial Laplace transforms","volume":"44","author":"L\u00f3pez-Fern\u00e1ndez, Mar\u00eda","year":"2006","journal-title":"SIAM J. Numer. Anal.","ISSN":"http:\/\/id.crossref.org\/issn\/0036-1429","issn-type":"print"},{"issue":"1","key":"9","doi-asserted-by":"publisher","first-page":"20","DOI":"10.1137\/0727002","article-title":"A difference scheme for a nonlinear partial integrodifferential equation","volume":"27","author":"L\u00f3pez Marcos, J. C.","year":"1990","journal-title":"SIAM J. Numer. Anal.","ISSN":"http:\/\/id.crossref.org\/issn\/0036-1429","issn-type":"print"},{"issue":"213","key":"10","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1090\/S0025-5718-96-00677-1","article-title":"Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term","volume":"65","author":"Lubich, Ch.","year":"1996","journal-title":"Math. Comp.","ISSN":"http:\/\/id.crossref.org\/issn\/0025-5718","issn-type":"print"},{"issue":"3","key":"11","doi-asserted-by":"publisher","first-page":"481","DOI":"10.1007\/s00211-006-0045-y","article-title":"A second-order accurate numerical method for a fractional wave equation","volume":"105","author":"McLean, William","year":"2007","journal-title":"Numer. Math.","ISSN":"http:\/\/id.crossref.org\/issn\/0029-599X","issn-type":"print"},{"issue":"1","key":"12","doi-asserted-by":"publisher","first-page":"23","DOI":"10.1017\/S0334270000007268","article-title":"Numerical solution of an evolution equation with a positive-type memory term","volume":"35","author":"McLean, W.","year":"1993","journal-title":"J. Austral. Math. Soc. Ser. B","ISSN":"http:\/\/id.crossref.org\/issn\/0334-2700","issn-type":"print"},{"issue":"3","key":"13","doi-asserted-by":"publisher","first-page":"439","DOI":"10.1093\/imanum\/24.3.439","article-title":"Time discretization of an evolution equation via Laplace transforms","volume":"24","author":"McLean, William","year":"2004","journal-title":"IMA J. Numer. Anal.","ISSN":"http:\/\/id.crossref.org\/issn\/0272-4979","issn-type":"print"},{"key":"14","unstructured":"W. McLean and V. Thom\u00e9e, Numerical solution via Laplace transforms of a fractional order evolution equation, J. Integral Equations Appl., to appear."},{"issue":"1","key":"15","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1016\/0377-0427(95)00025-9","article-title":"Discretization with variable time steps of an evolution equation with a positive-type memory term","volume":"69","author":"McLean, W.","year":"1996","journal-title":"J. Comput. Appl. Math.","ISSN":"http:\/\/id.crossref.org\/issn\/0377-0427","issn-type":"print"},{"issue":"2","key":"16","doi-asserted-by":"publisher","first-page":"319","DOI":"10.1137\/0725022","article-title":"A numerical method for a partial integro-differential equation","volume":"25","author":"Sanz-Serna, J. M.","year":"1988","journal-title":"SIAM J. Numer. Anal.","ISSN":"http:\/\/id.crossref.org\/issn\/0036-1429","issn-type":"print"},{"issue":"2","key":"17","doi-asserted-by":"publisher","first-page":"421","DOI":"10.1137\/050623139","article-title":"Fast and oblivious convolution quadrature","volume":"28","author":"Sch\u00e4dle, Achim","year":"2006","journal-title":"SIAM J. Sci. Comput.","ISSN":"http:\/\/id.crossref.org\/issn\/1064-8275","issn-type":"print"},{"issue":"1","key":"18","doi-asserted-by":"publisher","first-page":"134","DOI":"10.1063\/1.528578","article-title":"Fractional diffusion and wave equations","volume":"30","author":"Schneider, W. R.","year":"1989","journal-title":"J. Math. Phys.","ISSN":"http:\/\/id.crossref.org\/issn\/0022-2488","issn-type":"print"}],"container-title":["Mathematics of Computation"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/www.ams.org\/mcom\/2009-78-268\/S0025-5718-09-02234-0\/S0025-5718-09-02234-0.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"},{"URL":"https:\/\/www.ams.org\/mcom\/2009-78-268\/S0025-5718-09-02234-0\/S0025-5718-09-02234-0.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,7,30]],"date-time":"2021-07-30T03:39:56Z","timestamp":1627616396000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.ams.org\/mcom\/2009-78-268\/S0025-5718-09-02234-0\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2009,2,23]]},"references-count":18,"journal-issue":{"issue":"268","published-print":{"date-parts":[[2009,10]]}},"alternative-id":["S0025-5718-09-02234-0"],"URL":"https:\/\/doi.org\/10.1090\/s0025-5718-09-02234-0","archive":["CLOCKSS","Portico"],"relation":{},"ISSN":["0025-5718","1088-6842"],"issn-type":[{"value":"0025-5718","type":"print"},{"value":"1088-6842","type":"electronic"}],"subject":[],"published":{"date-parts":[[2009,2,23]]}}}