{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,3,13]],"date-time":"2024-03-13T17:51:08Z","timestamp":1710352268704},"reference-count":15,"publisher":"American Mathematical Society (AMS)","issue":"302","license":[{"start":{"date-parts":[[2017,2,18]],"date-time":"2017-02-18T00:00:00Z","timestamp":1487376000000},"content-version":"am","delay-in-days":366,"URL":"https:\/\/www.ams.org\/publications\/copyright-and-permissions"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Math. Comp."],"abstract":"

We study the avoidability of long \n\n \n k<\/mml:mi>\n k<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>-abelian-squares and \n\n \n k<\/mml:mi>\n k<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>-abelian-cubes on binary and ternary alphabets. For \n\n \n \n k<\/mml:mi>\n =<\/mml:mo>\n 1<\/mml:mn>\n <\/mml:mrow>\n k=1<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>, these are M\u00e4kel\u00e4\u2019s questions. We show that one cannot avoid abelian-cubes of abelian period at least \n\n \n 2<\/mml:mn>\n 2<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula> in infinite binary words, and therefore answering negatively one question from M\u00e4kel\u00e4. Then we show that one can avoid \n\n \n 3<\/mml:mn>\n 3<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>-abelian-squares of period at least \n\n \n 3<\/mml:mn>\n 3<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula> in infinite binary words and \n\n \n 2<\/mml:mn>\n 2<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>-abelian-squares of period at least 2 in infinite ternary words. Finally, we study the minimum number of distinct \n\n \n k<\/mml:mi>\n k<\/mml:annotation>\n <\/mml:semantics>\n<\/mml:math>\n<\/inline-formula>-abelian-squares that must appear in an infinite binary word.<\/p>","DOI":"10.1090\/mcom\/3085","type":"journal-article","created":{"date-parts":[[2015,7,15]],"date-time":"2015-07-15T13:46:58Z","timestamp":1436968018000},"page":"3051-3060","source":"Crossref","is-referenced-by-count":7,"title":["Avoidability of long \ud835\udc58-abelian repetitions"],"prefix":"10.1090","volume":"85","author":[{"given":"Micha\u00ebl","family":"Rao","sequence":"first","affiliation":[]},{"given":"Matthieu","family":"Rosenfeld","sequence":"additional","affiliation":[]}],"member":"14","published-online":{"date-parts":[[2016,2,18]]},"reference":[{"issue":"2","key":"1","doi-asserted-by":"publisher","first-page":"151","DOI":"10.1142\/S0218196793000123","article-title":"On abelian power-free morphisms","volume":"3","author":"Carpi, Arturo","year":"1993","journal-title":"Internat. J. Algebra Comput.","ISSN":"http:\/\/id.crossref.org\/issn\/0218-1967","issn-type":"print"},{"issue":"1-3","key":"2","doi-asserted-by":"publisher","first-page":"155","DOI":"10.1016\/S0166-218X(97)88002-X","article-title":"On the number of abelian square-free words on four letters","volume":"81","author":"Carpi, Arturo","year":"1998","journal-title":"Discrete Appl. Math.","ISSN":"http:\/\/id.crossref.org\/issn\/0166-218X","issn-type":"print"},{"issue":"2","key":"3","doi-asserted-by":"publisher","first-page":"181","DOI":"10.1016\/0097-3165(79)90044-X","article-title":"Strongly nonrepetitive sequences and progression-free sets","volume":"27","author":"Dekking, F. M.","year":"1979","journal-title":"J. Combin. Theory Ser. A","ISSN":"http:\/\/id.crossref.org\/issn\/0097-3165","issn-type":"print"},{"key":"4","doi-asserted-by":"publisher","first-page":"159","DOI":"10.1016\/0097-3165(74)90041-7","article-title":"On nonrepetitive sequences","volume":"16","author":"Entringer, R. C.","year":"1974","journal-title":"J. Combinatorial Theory Ser. A","ISSN":"http:\/\/id.crossref.org\/issn\/0097-3165","issn-type":"print"},{"key":"5","first-page":"291","article-title":"Some unsolved problems","volume":"4","author":"Erd\u0151s, Paul","year":"1957","journal-title":"Michigan Math. J.","ISSN":"http:\/\/id.crossref.org\/issn\/0026-2285","issn-type":"print"},{"key":"6","first-page":"221","article-title":"Some unsolved problems","volume":"6","author":"Erd\u0151s, Paul","year":"1961","journal-title":"Magyar Tud. Akad. Mat. Kutat\\'{o} Int. K\\\"{o}zl.","ISSN":"http:\/\/id.crossref.org\/issn\/0541-9514","issn-type":"print"},{"key":"7","first-page":"1268","article-title":"Strongly asymmetric sequences generated by a finite number of symbols.","volume":"179","author":"Evdokimov, A. A.","year":"1968","journal-title":"Dokl. Akad. Nauk SSSR","ISSN":"http:\/\/id.crossref.org\/issn\/0002-3264","issn-type":"print"},{"key":"8","first-page":"Research Paper 2, approx. 9","article-title":"How many squares must a binary sequence contain?","volume":"2","author":"Fraenkel, Aviezri S.","year":"1995","journal-title":"Electron. J. Combin."},{"issue":"8","key":"9","doi-asserted-by":"publisher","first-page":"2189","DOI":"10.1016\/j.jcta.2013.08.008","article-title":"On a generalization of Abelian equivalence and complexity of infinite words","volume":"120","author":"Karhumaki, Juhani","year":"2013","journal-title":"J. Combin. Theory Ser. A","ISSN":"http:\/\/id.crossref.org\/issn\/0097-3165","issn-type":"print"},{"key":"10","doi-asserted-by":"publisher","first-page":"41","DOI":"10.1007\/3-540-55719-9_62","article-title":"Abelian squares are avoidable on 4 letters","author":"Ker\u00e4nen, Veikko","year":"1992"},{"key":"11","unstructured":"Veikko Ker\u00e4nen, New abelian square-free DT0L-languages over 4 letters., Manuscript (2003)."},{"key":"12","series-title":"Cambridge Mathematical Library","isbn-type":"print","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511566097","volume-title":"Combinatorics on words","author":"Lothaire, M.","year":"1997","ISBN":"http:\/\/id.crossref.org\/isbn\/0521599245"},{"key":"13","doi-asserted-by":"publisher","first-page":"267","DOI":"10.1017\/s0305004100046077","article-title":"Non-repetitive sequences","volume":"68","author":"Pleasants, P. A. B.","year":"1970","journal-title":"Proc. Cambridge Philos. Soc.","ISSN":"http:\/\/id.crossref.org\/issn\/0008-1981","issn-type":"print"},{"key":"14","doi-asserted-by":"publisher","first-page":"39","DOI":"10.1016\/j.tcs.2015.07.026","article-title":"On some generalizations of abelian power avoidability","volume":"601","author":"Rao, Micha\u00ebl","year":"2015","journal-title":"Theoret. Comput. Sci.","ISSN":"http:\/\/id.crossref.org\/issn\/0304-3975","issn-type":"print"},{"key":"15","unstructured":"A. Thue, \u00dcber die gegenseitige lage gleicher teile gewisser zeichenreihen., Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiania 10 (1912), 1\u201367."}],"container-title":["Mathematics of Computation"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/www.ams.org\/mcom\/2016-85-302\/S0025-5718-2016-03085-9\/S0025-5718-2016-03085-9.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"},{"URL":"https:\/\/www.ams.org\/mcom\/2016-85-302\/S0025-5718-2016-03085-9\/S0025-5718-2016-03085-9.pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,7,30]],"date-time":"2021-07-30T06:40:48Z","timestamp":1627627248000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.ams.org\/mcom\/2016-85-302\/S0025-5718-2016-03085-9\/"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,2,18]]},"references-count":15,"journal-issue":{"issue":"302","published-print":{"date-parts":[[2016,11]]}},"alternative-id":["S0025-5718-2016-03085-9"],"URL":"https:\/\/doi.org\/10.1090\/mcom\/3085","archive":["CLOCKSS","Portico"],"relation":{},"ISSN":["0025-5718","1088-6842"],"issn-type":[{"value":"0025-5718","type":"print"},{"value":"1088-6842","type":"electronic"}],"subject":[],"published":{"date-parts":[[2016,2,18]]}}}