{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,17]],"date-time":"2024-07-17T21:18:50Z","timestamp":1721251130688},"reference-count":31,"publisher":"Informa UK Limited","issue":"2","funder":[{"DOI":"10.13039\/501100001840","name":"Icelandic Centre for Research","doi-asserted-by":"publisher","id":[{"id":"10.13039\/501100001840","id-type":"DOI","asserted-by":"publisher"}]},{"name":"The Strategic Focus Area \u201cPersonalized Health and Related Technologies\u201d of the ETH Domain","award":["018-430","2018-325"]}],"content-domain":{"domain":["www.tandfonline.com"],"crossmark-restriction":true},"short-container-title":["Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization"],"published-print":{"date-parts":[[2023,3,4]]},"DOI":"10.1080\/21681163.2022.2068160","type":"journal-article","created":{"date-parts":[[2022,5,3]],"date-time":"2022-05-03T23:03:44Z","timestamp":1651619024000},"page":"253-265","update-policy":"http:\/\/dx.doi.org\/10.1080\/tandf_crossmark_01","source":"Crossref","is-referenced-by-count":6,"title":["Fast and robust femur segmentation from computed tomography images for patient-specific hip fracture risk screening"],"prefix":"10.1080","volume":"11","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-5702-4706","authenticated-orcid":false,"given":"Pall Asgeir","family":"Bjornsson","sequence":"first","affiliation":[{"name":"The Department of Electrical and Computer Engineering, The University of Iceland, Reykjavik, Iceland"}]},{"given":"Alexander","family":"Baker","sequence":"additional","affiliation":[{"name":"The Institute for Biomechanics, ETH Zurich, Zurich, Switzerland"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6254-8878","authenticated-orcid":false,"given":"Ingmar","family":"Fleps","sequence":"additional","affiliation":[{"name":"The Institute for Biomechanics, ETH Zurich, Zurich, Switzerland"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5477-0594","authenticated-orcid":false,"given":"Yves","family":"Pauchard","sequence":"additional","affiliation":[{"name":"McCaig Institute for Bone and Joint Health, The University of Calgary, Calgary, AB Canada"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-4112-6729","authenticated-orcid":false,"given":"Halldor","family":"Palsson","sequence":"additional","affiliation":[{"name":"The Department of Industrial Engineering, Mechanical Engineering, and Computer Science, The University of Iceland, Reykjavik, Iceland"}]},{"given":"Stephen J.","family":"Ferguson","sequence":"additional","affiliation":[{"name":"The Institute for Biomechanics, ETH Zurich, Zurich, Switzerland"}]},{"given":"Sigurdur","family":"Sigurdsson","sequence":"additional","affiliation":[{"name":"The Icelandic Heart Association, Kopavogur, Iceland"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5696-0084","authenticated-orcid":false,"given":"Vilmundur","family":"Gudnason","sequence":"additional","affiliation":[{"name":"The Icelandic Heart Association, Kopavogur, Iceland"},{"name":"The Department of Medicine, The University of Iceland, Reykjavik, Iceland"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8324-2651","authenticated-orcid":false,"given":"Benedikt","family":"Helgason","sequence":"additional","affiliation":[{"name":"The Institute for Biomechanics, ETH Zurich, Zurich, Switzerland"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2139-0979","authenticated-orcid":false,"given":"Lotta Maria","family":"Ellingsen","sequence":"additional","affiliation":[{"name":"The Department of Electrical and Computer Engineering, The University of Iceland, Reykjavik, Iceland"},{"name":"The Department of Electrical and Computer Engineering, The Johns Hopkins University, Baltimore, MD, USA"}]}],"member":"301","published-online":{"date-parts":[[2022,5,3]]},"reference":[{"key":"cit0001","doi-asserted-by":"publisher","DOI":"10.1117\/12.2581100"},{"key":"cit0002","doi-asserted-by":"publisher","DOI":"10.1109\/JBHI.2018.2834551"},{"key":"cit0003","doi-asserted-by":"publisher","DOI":"10.1109\/JBHI.2017.2785389"},{"key":"cit0004","doi-asserted-by":"publisher","DOI":"10.1016\/j.media.2015.08.011"},{"key":"cit0005","doi-asserted-by":"publisher","DOI":"10.2307\/1932409"},{"key":"cit0006","doi-asserted-by":"publisher","DOI":"10.1016\/j.jmbbm.2017.10.033"},{"key":"cit0007","doi-asserted-by":"publisher","DOI":"10.1016\/j.bone.2018.09.014"},{"key":"cit0008","doi-asserted-by":"crossref","unstructured":"Fleps I, Enns-Bray W, Baker A, Bahaloo H, Sigurdsson S, Gudnason V, Ferguson S, P\u00e1lsson H, Helgason B 2021. FEM-Derived femoral strength is a better predictor of hip fracture risk than aBMD in the AGES Reykjavik study cohort. Under revision in Bone.","DOI":"10.1016\/j.bone.2021.116219"},{"key":"cit0009","doi-asserted-by":"publisher","DOI":"10.1002\/jbmr.3804"},{"key":"cit0010","doi-asserted-by":"publisher","DOI":"10.1016\/j.bone.2021.116219"},{"key":"cit0011","doi-asserted-by":"publisher","DOI":"10.1016\/j.injury.2008.03.022"},{"key":"cit0012","doi-asserted-by":"publisher","DOI":"10.1093\/aje\/kwk115"},{"key":"cit0013","doi-asserted-by":"publisher","DOI":"10.1016\/8756-3282(95)00383-5"},{"key":"cit0014","doi-asserted-by":"publisher","DOI":"10.1002\/mp.13675"},{"key":"cit0015","unstructured":"Ioffe S, Szegedy C. 2015. Batch normalization: Accelerating deep network training by reducing internal covariate shift. ArXiv. abs\/1502.03167."},{"key":"cit0016","unstructured":"Isensee F, J\u00e4ger P, Wasserthal J, Zimmerer D, Petersen J, Kohl S, Schock J, Klein A, Ro\u00df T, Wirkert S, et al. 2020. Batchgenerators - a Python framework for data augmentation. https:\/\/github.com\/MIC-DKFZ\/batchgenerators."},{"key":"cit0017","volume-title":"International Conference on Learning Representations","author":"Kingma D","year":"2014"},{"key":"cit0018","unstructured":"LeCun Y, Boser B, Denker J, Henderson D, Howard R, Hubbard W, Jackel L. 1990. Handwritten digit recognition with a back-propagation network. Denver (CO): NIPS; pp. 396\u2013404."},{"key":"cit0019","doi-asserted-by":"crossref","unstructured":"Milletari F, Navab N, Ahmadi SA. 2016. V-Net: Fully convolutional neural networks for volumetric medical image segmentation. 10; 565\u2013571.","DOI":"10.1109\/3DV.2016.79"},{"key":"cit0020","doi-asserted-by":"crossref","unstructured":"M\u00fcller D, Kramer F. 2019. Miscnn: a framework for medical image segmentation with convolutional neural networks and deep learning. 01. Presented at KiTS19.","DOI":"10.24926\/548719.074"},{"key":"cit0021","doi-asserted-by":"publisher","DOI":"10.1007\/s002239900679"},{"issue":"3","key":"cit0022","first-page":"342","volume":"20","author":"Pauchard Y","year":"2016","journal-title":"Comput Methods Biomech Biomed Engin"},{"key":"cit0023","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"cit0024","doi-asserted-by":"publisher","DOI":"10.1016\/j.bone.2003.10.001"},{"key":"cit0025","doi-asserted-by":"publisher","DOI":"10.1016\/j.nicl.2019.101871"},{"key":"cit0026","doi-asserted-by":"publisher","DOI":"10.1359\/jbmr.2003.18.11.1947"},{"key":"cit0027","unstructured":"UN. 2015. World population ageing 2015. UN: Department of Economic and Social Affairs, Population Division. (ST\/ESA\/SER.A\/368)."},{"key":"cit0028","doi-asserted-by":"publisher","DOI":"10.1210\/jc.2004-1568"},{"key":"cit0029","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-40760-4_67"},{"key":"cit0030","doi-asserted-by":"publisher","DOI":"10.1007\/s11548-013-0950-3"},{"key":"cit0031","unstructured":"Zhao C, Keyak JH, Tang J, Kaneko TS, Khosla S, Amin S, Atkinson E, Zhao L, Serou M, Zhang C, et al. 2020. A deep learning-based method for automatic segmentation of proximal femur from quantitative computed tomography images. ArXiv. abs\/2006.05513."}],"container-title":["Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.tandfonline.com\/doi\/pdf\/10.1080\/21681163.2022.2068160","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,6]],"date-time":"2023-03-06T09:58:02Z","timestamp":1678096682000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.tandfonline.com\/doi\/full\/10.1080\/21681163.2022.2068160"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,5,3]]},"references-count":31,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2023,3,4]]}},"alternative-id":["10.1080\/21681163.2022.2068160"],"URL":"https:\/\/doi.org\/10.1080\/21681163.2022.2068160","relation":{},"ISSN":["2168-1163","2168-1171"],"issn-type":[{"value":"2168-1163","type":"print"},{"value":"2168-1171","type":"electronic"}],"subject":[],"published":{"date-parts":[[2022,5,3]]},"assertion":[{"value":"The publishing and review policy for this title is described in its Aims & Scope.","order":1,"name":"peerreview_statement","label":"Peer Review Statement"},{"value":"http:\/\/www.tandfonline.com\/action\/journalInformation?show=aimsScope&journalCode=tciv20","URL":"http:\/\/www.tandfonline.com\/action\/journalInformation?show=aimsScope&journalCode=tciv20","order":2,"name":"aims_and_scope_url","label":"Aim & Scope"},{"value":"2021-10-13","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2022-04-17","order":2,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2022-05-03","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}