{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,3,23]],"date-time":"2025-03-23T04:15:37Z","timestamp":1742703337191,"version":"3.40.2"},"reference-count":31,"publisher":"Institution of Engineering and Technology (IET)","issue":"8","license":[{"start":{"date-parts":[[2023,3,27]],"date-time":"2023-03-27T00:00:00Z","timestamp":1679875200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by-nc-nd\/4.0\/"}],"content-domain":{"domain":["ietresearch.onlinelibrary.wiley.com"],"crossmark-restriction":true},"short-container-title":["IET Image Processing"],"published-print":{"date-parts":[[2023,6]]},"abstract":"Abstract<\/jats:title>Improving the resolution of computed tomography (CT) medical images can help doctors more accurately identify lesions, which is important in clinical diagnosis. In the absence of natural paired datasets of high resolution and low resolution image pairs, we abandoned the conventional Bicubic method and innovatively used a dataset of images of a single resolution to create near\u2010natural high\u2013low\u2010resolution image pairs by designing a deep learning network and utilizing noise injection. In addition, we propose a super\u2010resolution generative adversarial network called KerSRGAN which includes a super\u2010resolution generator, super\u2010resolution discriminator, and super\u2010resolution feature extractor to achieve a 4\u00d7 super\u2010resolution of CT images. The results of an experimental evaluation show that KerSRGAN achieved superior performance compared to the state\u2010of\u2010the\u2010art methods in terms of a quantitative comparison of non\u2010reference image quality evaluation indicators on the generated 4\u00d7 super\u2010resolution CT images. Moreover, in terms of an intuitive visual comparison, the images generated by the KerSRGAN method had more precise details and better perceptual quality.<\/jats:p>","DOI":"10.1049\/ipr2.12797","type":"journal-article","created":{"date-parts":[[2023,3,27]],"date-time":"2023-03-27T14:58:56Z","timestamp":1679929136000},"page":"2362-2374","update-policy":"https:\/\/doi.org\/10.1002\/crossmark_policy","source":"Crossref","is-referenced-by-count":3,"title":["4\u00d7 Super\u2010resolution of unsupervised CT images based on GAN"],"prefix":"10.1049","volume":"17","author":[{"given":"Yunhe","family":"Li","sequence":"first","affiliation":[{"name":"School of Electronic and Electrical Engineering Zhaoqing University Zhaoqing China"}]},{"given":"Lunqiang","family":"Chen","sequence":"additional","affiliation":[{"name":"School of Electronic and Electrical Engineering Zhaoqing University Zhaoqing China"}]},{"given":"Bo","family":"Li","sequence":"additional","affiliation":[{"name":"School of Electronic and Electrical Engineering Zhaoqing University Zhaoqing China"}]},{"given":"Huiyan","family":"Zhao","sequence":"additional","affiliation":[{"name":"School of Electrical Engineering & Information Northeast Petroleum University Daqing China"}]}],"member":"265","published-online":{"date-parts":[[2023,3,27]]},"reference":[{"key":"e_1_2_10_2_1","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-74658-4_16"},{"key":"e_1_2_10_3_1","doi-asserted-by":"publisher","DOI":"10.3978\/j.issn.2072\u20101439.2013.09.06"},{"key":"e_1_2_10_4_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.sysarc.2015.11.005"},{"key":"e_1_2_10_5_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10489-020-02116-1"},{"key":"e_1_2_10_6_1","doi-asserted-by":"publisher","DOI":"10.1155\/2022\/7288090"},{"key":"e_1_2_10_7_1","first-page":"1","article-title":"MFFN: image super\u2010resolution via multi\u2010level features fusion network","author":"Chen Y.","year":"2023","journal-title":"Vis. Comp."},{"key":"e_1_2_10_8_1","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2022.3157870"},{"key":"e_1_2_10_9_1","doi-asserted-by":"crossref","unstructured":"Hu M. Jiang K. Nie Z. et\u00a0al.:You only align once: Bidirectional interaction for spatial\u2010temporal video super\u2010resolution. In: Proceedings of the 30th ACM International Conference on Multimedia pp.847\u2013855. ACM New York (2022)","DOI":"10.1145\/3503161.3547874"},{"key":"e_1_2_10_10_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jvcir.2023.103776"},{"key":"e_1_2_10_11_1","unstructured":"Goodfellow I.J. Pouget\u2010Abadie J. Mirza M. Xu B. Warde\u2010Farley D. Ozair S. et\u00a0al.:Generative adversarial networks. arXiv preprint arXiv:1406.2661(2014).https:\/\/doi.org\/10.48550\/arXiv.1406.2661"},{"key":"e_1_2_10_12_1","doi-asserted-by":"crossref","unstructured":"Ledig C. Theis L. Husz\u00e1r F. Caballero J. Cunningham A. Acosta A. et\u00a0al.:Photo\u2010realistic single image super\u2010resolution using a generative adversarial network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Piscataway (2017).https:\/\/doi.org\/10.1109\/CVPR.2017.19","DOI":"10.1109\/CVPR.2017.19"},{"key":"e_1_2_10_13_1","first-page":"63","volume-title":"Computer Vision \u2013 ECCV 2018 Workshops","author":"Wang X.","year":"2018"},{"key":"e_1_2_10_14_1","doi-asserted-by":"crossref","unstructured":"Lu Z. Li J. Liu H. et\u00a0al.:Transformer for single image super\u2010resolution. In: Proceedings of the IEEE\/CVF Conference on Computer Vision and Pattern Recognition pp.457\u2013466. IEEE Piscataway (2022)","DOI":"10.1109\/CVPRW56347.2022.00061"},{"key":"e_1_2_10_15_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.compbiomed.2022.106112"},{"key":"e_1_2_10_16_1","doi-asserted-by":"publisher","DOI":"10.3390\/diagnostics12040991"},{"key":"e_1_2_10_17_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11760\u2010020\u201001790\u20105"},{"key":"e_1_2_10_18_1","doi-asserted-by":"publisher","DOI":"10.1103\/PhysRevApplied.17.054046"},{"key":"e_1_2_10_19_1","doi-asserted-by":"publisher","DOI":"10.3390\/diagnostics12112725"},{"key":"e_1_2_10_20_1","doi-asserted-by":"publisher","DOI":"10.1109\/TMI.2022.3148110"},{"issue":"2","key":"e_1_2_10_21_1","first-page":"584","article-title":"Ct three\u2010dimensional reconstruction algorithm based on super\u2010resolution network","volume":"42","author":"Li J.","year":"2022","journal-title":"J. Comp. Appl."},{"key":"e_1_2_10_22_1","doi-asserted-by":"publisher","DOI":"10.3390\/en15145115"},{"key":"e_1_2_10_23_1","doi-asserted-by":"publisher","DOI":"10.1109\/TASSP.1981.1163711"},{"key":"e_1_2_10_24_1","unstructured":"Demir U. Unal G.:Patch\u2010based image inpainting with generative adversarial networks. arXiv preprint arXiv:1803.07422(2018).https:\/\/doi.org\/10.48550\/arXiv.1803.07422"},{"key":"e_1_2_10_25_1","unstructured":"Simonyan K. Zisserman A.:Very deep convolutional networks for large\u2010scale image recognition. arXiv preprint arXiv:1409.1556(2014).https:\/\/doi.org\/10.48550\/arXiv.1409.1556"},{"key":"e_1_2_10_26_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2021.3118444"},{"key":"e_1_2_10_27_1","unstructured":"Goldgof D. Hall L. Hawkins S. Schabath M. Stringfield O. Garcia A. et\u00a0al.:Data from QIN_LUNG_CT(2015).https:\/\/doi.org\/10.7937\/K9\/TCIA.2015.NPGZYZBZ"},{"key":"e_1_2_10_28_1","doi-asserted-by":"crossref","unstructured":"Zvezdakova A. Kulikov D. Kondranin D. Vatolin D.:Barriers towards no\u2010reference metrics application to compressed video quality analysis: on the example of no\u2010reference metric NIQE. arXiv preprint arXiv:1907.03842(2019).https:\/\/doi.org\/10.48550\/arXiv.1907.03842","DOI":"10.30987\/graphicon-2019-2-22-27"},{"key":"e_1_2_10_29_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.mri.2017.07.016"},{"key":"e_1_2_10_30_1","first-page":"1415","article-title":"Evaluation of perception based image quality evaluator (PIQE) no\u2010reference image quality score for 99mTc\u2010MDP bone scan images","volume":"61","author":"Pandey A.","year":"2020","journal-title":"J. Nucl. Med"},{"key":"e_1_2_10_31_1","unstructured":"Wang X. Yu K. Chan K.C.K. Dong C. Loy C.C.:BasicSR(2020)"},{"key":"e_1_2_10_32_1","unstructured":"Bell\u2010Kligler S. Shocher A. Irani M.:Blind super\u2010resolution kernel estimation using an internal\u2010gan. arXiv preprint arXiv:1909.06581(2019).https:\/\/doi.org\/10.48550\/arXiv.1909.06581"}],"container-title":["IET Image Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/ietresearch.onlinelibrary.wiley.com\/doi\/pdf\/10.1049\/ipr2.12797","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,3,22]],"date-time":"2025-03-22T12:25:13Z","timestamp":1742646313000},"score":1,"resource":{"primary":{"URL":"https:\/\/ietresearch.onlinelibrary.wiley.com\/doi\/10.1049\/ipr2.12797"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,27]]},"references-count":31,"journal-issue":{"issue":"8","published-print":{"date-parts":[[2023,6]]}},"alternative-id":["10.1049\/ipr2.12797"],"URL":"https:\/\/doi.org\/10.1049\/ipr2.12797","archive":["Portico"],"relation":{},"ISSN":["1751-9659","1751-9667"],"issn-type":[{"type":"print","value":"1751-9659"},{"type":"electronic","value":"1751-9667"}],"subject":[],"published":{"date-parts":[[2023,3,27]]},"assertion":[{"value":"2022-04-06","order":0,"name":"received","label":"Received","group":{"name":"publication_history","label":"Publication History"}},{"value":"2023-03-17","order":2,"name":"accepted","label":"Accepted","group":{"name":"publication_history","label":"Publication History"}},{"value":"2023-03-27","order":3,"name":"published","label":"Published","group":{"name":"publication_history","label":"Publication History"}}]}}