{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,4,27]],"date-time":"2024-04-27T18:33:52Z","timestamp":1714242832618},"reference-count":52,"publisher":"Institution of Engineering and Technology (IET)","issue":"14","license":[{"start":{"date-parts":[[2021,6,29]],"date-time":"2021-06-29T00:00:00Z","timestamp":1624924800000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"},{"start":{"date-parts":[[2021,6,29]],"date-time":"2021-06-29T00:00:00Z","timestamp":1624924800000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/doi.wiley.com\/10.1002\/tdm_license_1.1"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Basic Research Program of China","doi-asserted-by":"publisher","award":["2017YFB1002203"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["PA2020GDSK0059"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IET Image Processing"],"published-print":{"date-parts":[[2021,12]]},"DOI":"10.1049\/ipr2.12299","type":"journal-article","created":{"date-parts":[[2021,6,29]],"date-time":"2021-06-29T11:40:41Z","timestamp":1624966841000},"page":"3441-3453","source":"Crossref","is-referenced-by-count":4,"title":["Deep social force network for anomaly event detection"],"prefix":"10.1049","volume":"15","author":[{"given":"Xingming","family":"Yang","sequence":"first","affiliation":[{"name":"Key Laboratory of Knowledge Engineering with Big Data Hefei University of Technology, Ministry of Education Hefei China"},{"name":"Anhui Province Key Laboratory of Affective Computing & Advanced Intelligent Machine Hefei University of Technology Hefei China"},{"name":"School of Computer Science and Information Engineering Hefei University of Technology Hefei China"}]},{"given":"Zhiming","family":"Wang","sequence":"additional","affiliation":[{"name":"School of Computer Science and Information Engineering Hefei University of Technology Hefei China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7332-5653","authenticated-orcid":false,"given":"Kewei","family":"Wu","sequence":"additional","affiliation":[{"name":"Key Laboratory of Knowledge Engineering with Big Data Hefei University of Technology, Ministry of Education Hefei China"},{"name":"Anhui Province Key Laboratory of Affective Computing & Advanced Intelligent Machine Hefei University of Technology Hefei China"},{"name":"School of Computer Science and Information Engineering Hefei University of Technology Hefei China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9834-4730","authenticated-orcid":false,"given":"Zhao","family":"Xie","sequence":"additional","affiliation":[{"name":"Key Laboratory of Knowledge Engineering with Big Data Hefei University of Technology, Ministry of Education Hefei China"},{"name":"Anhui Province Key Laboratory of Affective Computing & Advanced Intelligent Machine Hefei University of Technology Hefei China"},{"name":"School of Computer Science and Information Engineering Hefei University of Technology Hefei China"}]},{"given":"Jinkui","family":"Hou","sequence":"additional","affiliation":[{"name":"School of Computer Engineering Weifang University Weifang China"}]}],"member":"265","published-online":{"date-parts":[[2021,6,29]]},"reference":[{"key":"e_1_2_7_2_1","doi-asserted-by":"crossref","unstructured":"Hasan M. et\u00a0al.:Learning temporal regularity in video sequences. In: 2016IEEE Conference on Computer Vision and Pattern Recognition pp.733\u2013742.IEEE(2016)","DOI":"10.1109\/CVPR.2016.86"},{"key":"e_1_2_7_3_1","doi-asserted-by":"crossref","unstructured":"Sultani W. Chen C. Shah M.:Real\u2010world anomaly detection in surveillance videos. In:IEEE Conference on Computer Vision and Pattern Recognition pp.6479\u20136488.IEEE(2018)","DOI":"10.1109\/CVPR.2018.00678"},{"key":"e_1_2_7_4_1","doi-asserted-by":"crossref","unstructured":"Zhong J. et\u00a0al.:Graph convolutional label noise cleaner: Train a plug\u2010and\u2010play action classifier for anomaly detection. In:IEEE Conference on Computer Vision and Pattern Recognition pp.1237\u20131246.IEEE(2019)","DOI":"10.1109\/CVPR.2019.00133"},{"key":"e_1_2_7_5_1","doi-asserted-by":"crossref","unstructured":"Zaheer M.Z. et\u00a0al.:CLAWS: clustering assisted weakly supervised learning with normalcy suppression for anomalous event detection. In:European Conference on Computer Vision 22 358\u2013376(2020)","DOI":"10.1007\/978-3-030-58542-6_22"},{"key":"e_1_2_7_6_1","doi-asserted-by":"crossref","unstructured":"Mohammadi S. et\u00a0al.:Angry crowds: Detecting violent events in videos. In:European Conference on Computer Vision 7 pp.3\u201318(2016)","DOI":"10.1007\/978-3-319-46478-7_1"},{"key":"e_1_2_7_7_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2949106"},{"key":"e_1_2_7_8_1","doi-asserted-by":"crossref","unstructured":"Sumon S.A. et\u00a0al.:Violent crowd flow detection using deep learning. In:Asian Conference on Intelligent Information and Database Systems vol.1 pp.613\u2013625(2019)","DOI":"10.1007\/978-3-030-14799-0_53"},{"key":"e_1_2_7_9_1","doi-asserted-by":"crossref","unstructured":"Lu C. Shi J. Jia J.:Abnormal event detection at 150 FPS in MATLAB. In:IEEE International Conference Computer Vision pp.2720\u20132727(2013)","DOI":"10.1109\/ICCV.2013.338"},{"key":"e_1_2_7_10_1","doi-asserted-by":"publisher","DOI":"10.18280\/ria.340208"},{"key":"e_1_2_7_11_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.ins.2018.02.065"},{"key":"e_1_2_7_12_1","doi-asserted-by":"publisher","DOI":"10.1016\/j.neucom.2018.10.106"},{"issue":"7","key":"e_1_2_7_13_1","first-page":"2167","article-title":"Recurrent prediction with spatio\u2010temporal attention for crowd attribute recognition","volume":"30","author":"Li Q.","year":"2020","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"e_1_2_7_14_1","doi-asserted-by":"crossref","unstructured":"Morais R. et\u00a0al.:Learning regularity in skeleton trajectories for anomaly detection in videos. In: 2019IEEE\/CVF Conference on Computer Vision and Pattern Recognition pp.11996\u201312004(2019)","DOI":"10.1109\/CVPR.2019.01227"},{"key":"e_1_2_7_15_1","doi-asserted-by":"crossref","unstructured":"Markovitz A. et\u00a0al.:Graph embedded pose clustering for anomaly detection. In:IEEE Conference on Computer Vision and Pattern Recognition pp.10536\u201310544(2020)","DOI":"10.1109\/CVPR42600.2020.01055"},{"key":"e_1_2_7_16_1","doi-asserted-by":"crossref","unstructured":"Su Y. et\u00a0al.:Human interaction learning on 3D skeleton point clouds for video violence recognition. In:European Conference on Computer Vision vol.4 pp.74\u201390(2020)","DOI":"10.1007\/978-3-030-58548-8_5"},{"key":"e_1_2_7_17_1","doi-asserted-by":"publisher","DOI":"10.1145\/3123266.3123313"},{"key":"e_1_2_7_18_1","doi-asserted-by":"crossref","unstructured":"Pang G. et\u00a0al.:Self\u2010trained deep ordinal regression for end\u2010to\u2010end video anomaly detection. In:IEEE Conference on Computer Vision and Pattern Recognition pp.12170\u201312179.IEEE(2020)","DOI":"10.1109\/CVPR42600.2020.01219"},{"key":"e_1_2_7_19_1","doi-asserted-by":"crossref","unstructured":"Shi B. et\u00a0al.:Weakly\u2010supervised action localization by generative attention modeling. In:IEEE Conference on Computer Vision and Pattern Recognition pp.1006\u20131016.IEEE(2020)","DOI":"10.1109\/CVPR42600.2020.00109"},{"key":"e_1_2_7_20_1","doi-asserted-by":"crossref","unstructured":"Abati D. et\u00a0al.:Latent space autoregression for novelty detection. In:IEEE Conference on Computer Vision and Pattern Recognition pp.481\u2013490.IEEE(2019)","DOI":"10.1109\/CVPR.2019.00057"},{"key":"e_1_2_7_21_1","doi-asserted-by":"crossref","unstructured":"Gong D. et\u00a0al.:Memorizing normality to detect anomaly: Memory\u2010augmented deep autoencoder for unsupervised anomaly detection. In:IEEE International Conference on Computer Vision pp.1705\u20131714.IEEE(2019)","DOI":"10.1109\/ICCV.2019.00179"},{"key":"e_1_2_7_22_1","doi-asserted-by":"crossref","unstructured":"Park H. Noh J. Ham B.:Learning memory\u2010guided normality for anomaly detection. In:IEEE Conference on Computer Vision and Pattern Recognition pp.14360\u201314369.IEEE(2020)","DOI":"10.1109\/CVPR42600.2020.01438"},{"key":"e_1_2_7_23_1","doi-asserted-by":"crossref","unstructured":"Sulun S. Tekalp A.M.:Can learned frame\u2010prediction compete with block\u2010motion compensation for video coding?(2020).https:\/\/arxiv.org\/abs\/2007.08922","DOI":"10.1007\/s11760-020-01751-y"},{"key":"e_1_2_7_24_1","doi-asserted-by":"crossref","unstructured":"Luo W. Liu W. Gao S.:A revisit of sparse coding based anomaly detection in stacked RNN framework. In:IEEE International Conference on Computer Vision pp.341\u2013349.IEEE(2017)","DOI":"10.1109\/ICCV.2017.45"},{"key":"e_1_2_7_25_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2019.2944377"},{"key":"e_1_2_7_26_1","doi-asserted-by":"crossref","unstructured":"Nguyen T. Meunier J.:Anomaly detection in video sequence with appearance\u2010motion correspondence. In:IEEE International Conference on Computer Vision pp.1273\u20131283.IEEE(2019)","DOI":"10.1109\/ICCV.2019.00136"},{"key":"e_1_2_7_27_1","doi-asserted-by":"crossref","unstructured":"Liu W. et\u00a0al.:Future frame prediction for anomaly detection\u2014A new baseline. In:IEEE Conference on Computer Vision and Pattern Recognition pp.6536\u20136545.IEEE(2018)","DOI":"10.1109\/CVPR.2018.00684"},{"key":"e_1_2_7_28_1","unstructured":"Simonyan K. Zisserman A.:Two\u2010stream convolutional networks for action recognition in videos. In:Conference on Neural Information Processing Systems pp.568\u2013576(2014)"},{"key":"e_1_2_7_29_1","doi-asserted-by":"crossref","unstructured":"Tran D. et\u00a0al.:Learning spatiotemporal features with 3D convolutional networks. In:IEEE International Conference on Computer Vision pp.4489\u20134497.IEEE(2015)","DOI":"10.1109\/ICCV.2015.510"},{"key":"e_1_2_7_30_1","doi-asserted-by":"crossref","unstructured":"Chen Y. et\u00a0al.:Multi\u2010fiber networks for video recognition. In:European Conference on Computer Vision vol.1 pp.364\u2013380(2018)","DOI":"10.1007\/978-3-030-01246-5_22"},{"key":"e_1_2_7_31_1","doi-asserted-by":"crossref","unstructured":"Lin J. Gan C. Han S.:TSM: Temporal shift module for efficient video understanding. In:IEEE International Conference on Computer Vision pp.7082\u20137092. IEEE (2019)","DOI":"10.1109\/ICCV.2019.00718"},{"key":"e_1_2_7_32_1","doi-asserted-by":"crossref","unstructured":"Sudhakaran S. Escalera S. Lanz O.:Gate\u2010shift networks for video action recognition. In:IEEE Conference on Computer Vision and Pattern Recognition pp.1099\u20131108.IEEE(2020)","DOI":"10.1109\/CVPR42600.2020.00118"},{"key":"e_1_2_7_33_1","doi-asserted-by":"crossref","unstructured":"Carreira J. Zisserman A.:Quo Vadis action recognition? A new model and the kinetics dataset. In:IEEE Conference on Computer Vision and Pattern Recognition pp.4724\u20134733.IEEE(2017)","DOI":"10.1109\/CVPR.2017.502"},{"key":"e_1_2_7_34_1","doi-asserted-by":"crossref","unstructured":"Wang L. et\u00a0al.:Appearance\u2010and\u2010relation networks for video classification. In:IEEE Conference on Computer Vision and Pattern Recognition pp.1430\u20131439.IEEE(2018)","DOI":"10.1109\/CVPR.2018.00155"},{"key":"e_1_2_7_35_1","doi-asserted-by":"crossref","unstructured":"Yang C. et\u00a0al.:Temporal pyramid network for action recognition. In:IEEE Conference on Computer Vision and Pattern Recognition pp.588\u2013597.IEEE(2020)","DOI":"10.1109\/CVPR42600.2020.00067"},{"key":"e_1_2_7_36_1","doi-asserted-by":"crossref","unstructured":"Qiu Z. et\u00a0al.:Learning spatio\u2010temporal representation with local and global diffusion. In:IEEE Conference on Computer Vision and Pattern Recognition pp.12056\u201312065.IEEE(2019)","DOI":"10.1109\/CVPR.2019.01233"},{"key":"e_1_2_7_37_1","doi-asserted-by":"crossref","unstructured":"Kim J. et\u00a0al.:Regularization on spatio\u2010temporally smoothed feature for action recognition. In:IEEE Conference on Computer Vision and Pattern Recognition pp.12100\u201312109.IEEE(2020)","DOI":"10.1109\/CVPR42600.2020.01212"},{"key":"e_1_2_7_38_1","doi-asserted-by":"crossref","unstructured":"Jiang B. et\u00a0al.:STM: spatiotemporal and motion encoding for action recognition. In:IEEE International Conference on Computer Vision pp.2000\u20132009.IEEE(2019)","DOI":"10.1109\/ICCV.2019.00209"},{"key":"e_1_2_7_39_1","doi-asserted-by":"crossref","unstructured":"Fan L. et\u00a0al.:End\u2010to\u2010end learning of motion representation for video understanding. In:IEEE Conference on Computer Vision and Pattern Recognition pp.6016\u20136025.IEEE(2018)","DOI":"10.1109\/CVPR.2018.00630"},{"key":"e_1_2_7_40_1","doi-asserted-by":"crossref","unstructured":"Shou Z. et\u00a0al.:DMC\u2010Net: Generating discriminative motion cues for fast compressed video action recognition. In:IEEE Conference on Computer Vision and Pattern Recognition pp.1268\u20131277.IEEE(2019)","DOI":"10.1109\/CVPR.2019.00136"},{"key":"e_1_2_7_41_1","unstructured":"Diba A. Pazandeh A.M. Gool L.V.:Efficient two\u2010stream motion and appearance 3D CNNs for video classification(2016).https:\/\/arxiv.org\/abs\/1608.08851"},{"key":"e_1_2_7_42_1","doi-asserted-by":"crossref","unstructured":"Zhu Y. et\u00a0al.:Hidden two\u2010stream convolutional networks for action recognition. In:Asian Conference on Computer Vision vol. 3 pp.363\u2013378(2018)","DOI":"10.1007\/978-3-030-20893-6_23"},{"key":"e_1_2_7_43_1","unstructured":"Ng J.Y. et\u00a0al.:Beyond short snippets: Deep networks for video classification. In:IEEE Conference on Computer Vision and Pattern Recognition pp.4694\u20134702.IEEE(2015)"},{"key":"e_1_2_7_44_1","doi-asserted-by":"crossref","unstructured":"Li Q. et\u00a0al.:Action recognition by learning deep multi\u2010granular spatio\u2010temporal video representation. In:International Conference on Multimedia Retrieval pp.159\u2013166(2016)","DOI":"10.1145\/2911996.2912001"},{"key":"e_1_2_7_45_1","doi-asserted-by":"crossref","unstructured":"Sun L. et\u00a0al.:Lattice long short\u2010term memory for human action recognition. In:IEEE International Conference on Computer Vision pp.2166\u20132175.IEEE(2017)","DOI":"10.1109\/ICCV.2017.236"},{"key":"e_1_2_7_46_1","doi-asserted-by":"crossref","unstructured":"Perrett T. Damen D.:DDLSTM: Dual\u2010domain LSTM for cross\u2010dataset action recognition. In:IEEE Conference on Computer Vision and Pattern Recognition pp.7852\u20137861.IEEE(2019)","DOI":"10.1109\/CVPR.2019.00804"},{"key":"e_1_2_7_47_1","doi-asserted-by":"crossref","unstructured":"Mehran R. Oyama A. Shah M.:Abnormal crowd behavior detection using social force model. In:IEEE Conference on Computer Vision and Pattern Recognition pp.935\u2013942.IEEE(2009)","DOI":"10.1109\/CVPR.2009.5206641"},{"key":"e_1_2_7_48_1","doi-asserted-by":"publisher","DOI":"10.1145\/3373646"},{"key":"e_1_2_7_49_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2019.2894345"},{"key":"e_1_2_7_50_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.2972079"},{"key":"e_1_2_7_51_1","doi-asserted-by":"publisher","DOI":"10.1109\/ACCESS.2020.3034348"},{"key":"e_1_2_7_52_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-020-01365-4"},{"key":"e_1_2_7_53_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2018.2875002"}],"container-title":["IET Image Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1049\/ipr2.12299","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1049\/ipr2.12299","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1049\/ipr2.12299","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,20]],"date-time":"2022-10-20T14:36:50Z","timestamp":1666276610000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1049\/ipr2.12299"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,6,29]]},"references-count":52,"journal-issue":{"issue":"14","published-print":{"date-parts":[[2021,12]]}},"alternative-id":["10.1049\/ipr2.12299"],"URL":"https:\/\/doi.org\/10.1049\/ipr2.12299","archive":["Portico"],"relation":{},"ISSN":["1751-9659","1751-9667"],"issn-type":[{"value":"1751-9659","type":"print"},{"value":"1751-9667","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,6,29]]}}}