{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,3]],"date-time":"2024-08-03T02:19:47Z","timestamp":1722651587537},"reference-count":45,"publisher":"Institution of Engineering and Technology (IET)","issue":"14","license":[{"start":{"date-parts":[[2021,3,18]],"date-time":"2021-03-18T00:00:00Z","timestamp":1616025600000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/creativecommons.org\/licenses\/by\/4.0\/"},{"start":{"date-parts":[[2021,3,18]],"date-time":"2021-03-18T00:00:00Z","timestamp":1616025600000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/doi.wiley.com\/10.1002\/tdm_license_1.1"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["61762061","62076117"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100004479","name":"Natural Science Foundation of Jiangxi Province","doi-asserted-by":"publisher","award":["20161ACB20004"],"id":[{"id":"10.13039\/501100004479","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IET Image Processing"],"published-print":{"date-parts":[[2021,12]]},"DOI":"10.1049\/ipr2.12175","type":"journal-article","created":{"date-parts":[[2021,3,18]],"date-time":"2021-03-18T10:47:15Z","timestamp":1616064435000},"page":"3512-3521","source":"Crossref","is-referenced-by-count":7,"title":["MSR\u2010FAN: Multi\u2010scale residual feature\u2010aware network for crowd counting"],"prefix":"10.1049","volume":"15","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3832-6439","authenticated-orcid":false,"given":"Haoyu","family":"Zhao","sequence":"first","affiliation":[{"name":"School of Information Engineering Nanchang University Nanchang 330031 China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2526-2181","authenticated-orcid":false,"given":"Weidong","family":"Min","sequence":"additional","affiliation":[{"name":"School of Software Nanchang University Nanchang 330047 China"},{"name":"Jiangxi Key Laboratory of Smart City Nanchang 330047 China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0976-3381","authenticated-orcid":false,"given":"Xin","family":"Wei","sequence":"additional","affiliation":[{"name":"Jiangxi Key Laboratory of Smart City Nanchang 330047 China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0445-5603","authenticated-orcid":false,"given":"Qi","family":"Wang","sequence":"additional","affiliation":[{"name":"School of Information Engineering Nanchang University Nanchang 330031 China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9151-2815","authenticated-orcid":false,"given":"Qiyan","family":"Fu","sequence":"additional","affiliation":[{"name":"School of Information Engineering Nanchang University Nanchang 330031 China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-6284-2209","authenticated-orcid":false,"given":"Zitai","family":"Wei","sequence":"additional","affiliation":[{"name":"School of Information Engineering Nanchang University Nanchang 330031 China"}]}],"member":"265","published-online":{"date-parts":[[2021,3,18]]},"reference":[{"key":"e_1_2_7_2_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2020.2994410"},{"key":"e_1_2_7_3_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2015.2396051"},{"key":"e_1_2_7_4_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2017.2740160"},{"key":"e_1_2_7_5_1","doi-asserted-by":"crossref","unstructured":"Li M. et\u00a0al.:Estimating the number of people in crowded scenes by mid based foreground segmentation and head\u2010shoulder detection. In:International Conference on Pattern Recognition (ICPR).Florida pp.1\u20134(2008)","DOI":"10.1109\/ICPR.2008.4761705"},{"key":"e_1_2_7_6_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2009.204"},{"key":"e_1_2_7_7_1","doi-asserted-by":"publisher","DOI":"10.1109\/TMM.2020.2985536"},{"key":"e_1_2_7_8_1","doi-asserted-by":"publisher","DOI":"10.1049\/iet-ipr.2019.0465"},{"key":"e_1_2_7_9_1","doi-asserted-by":"publisher","DOI":"10.1049\/iet-ipr.2018.5368"},{"key":"e_1_2_7_10_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-020-01365-4"},{"key":"e_1_2_7_11_1","doi-asserted-by":"crossref","unstructured":"Wang M. Wang X.:Automatic adaptation of a generic pedestrian detector to a specific traffic scene. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Colorado Springs pp.3401\u20133408(2011)","DOI":"10.1109\/CVPR.2011.5995698"},{"key":"e_1_2_7_12_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2007.70770"},{"key":"e_1_2_7_13_1","doi-asserted-by":"crossref","unstructured":"Barinova O. Lempitsky V. Kohli P.:On the detection of multiple object instances using Hough transforms. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).California pp.2233\u20132240(2010)","DOI":"10.1109\/CVPR.2010.5539905"},{"key":"e_1_2_7_14_1","doi-asserted-by":"crossref","unstructured":"Desai C. Ramanan D. Fowlkes C.:Discriminative models for multi\u2010class object layout. In:Proceedings of IEEE International Conference on Computer Vision (ICCV).Kyoto Japan pp.229\u2013236(2009)","DOI":"10.1109\/ICCV.2009.5459256"},{"key":"e_1_2_7_15_1","doi-asserted-by":"publisher","DOI":"10.1007\/s10851-008-0117-y"},{"key":"e_1_2_7_16_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11263-007-0095-3"},{"key":"e_1_2_7_17_1","doi-asserted-by":"crossref","unstructured":"Wu B. Nevatia R. Li Y.:Segmentation of multiple partially occluded objects by grouping merging assigning part detection responses. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Anchorage Alaska pp.1\u20138(2008)","DOI":"10.1007\/s11263-008-0194-9"},{"key":"e_1_2_7_18_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11432-019-2811-8"},{"key":"e_1_2_7_19_1","doi-asserted-by":"publisher","DOI":"10.1109\/TITS.2017.2756989"},{"key":"e_1_2_7_20_1","doi-asserted-by":"publisher","DOI":"10.1049\/iet-ipr.2019.1308"},{"key":"e_1_2_7_21_1","doi-asserted-by":"crossref","unstructured":"Xiong H. et\u00a0al.:From open set to closed set counting objects by spatial divide\u2010and\u2010conquer. In:Proceedings of IEEE International Conference on Computer Vision (ICCV).Seoul Korea pp.8361\u20108370(2019)","DOI":"10.1109\/ICCV.2019.00845"},{"key":"e_1_2_7_22_1","doi-asserted-by":"crossref","unstructured":"Liu L. et\u00a0al.:Crowd counting with deep structured scale integration network. In:Proceedings of IEEE International Conference on Computer Vision (ICCV).Venice Italy pp.1774\u20131783(2020)","DOI":"10.1109\/ICCV.2019.00186"},{"key":"e_1_2_7_23_1","doi-asserted-by":"crossref","unstructured":"Li Y. Zhang X. Chen D.:CSRNet: Dilated convolutional neural networks for understanding the highly congested scenes. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Utah USA pp.1091\u20131100(2018)","DOI":"10.1109\/CVPR.2018.00120"},{"key":"e_1_2_7_24_1","doi-asserted-by":"crossref","unstructured":"Yang Y. et\u00a0al.:Reverse perspective network for perspective\u2010aware object counting. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Washington pp.4373\u20134382(2020)","DOI":"10.1109\/CVPR42600.2020.00443"},{"key":"e_1_2_7_25_1","doi-asserted-by":"crossref","unstructured":"Shi Z. et\u00a0al.:Crowd counting with deep negative correlation learning. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Utah USA pp.5382\u20135390(2018)","DOI":"10.1109\/CVPR.2018.00564"},{"key":"e_1_2_7_26_1","doi-asserted-by":"crossref","unstructured":"Wan J. et\u00a0al.:Residual regression with semantic prior for crowd counting. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Washington pp.4031\u20134040(2020)","DOI":"10.1109\/CVPR.2019.00416"},{"key":"e_1_2_7_27_1","doi-asserted-by":"crossref","unstructured":"Ma Z. et\u00a0al.:Bayesian loss for crowd count estimation with point supervision. In:Proceedings of IEEE International Conference on Computer Vision (ICCV).Venice Italy pp.6141\u20136150(2020)","DOI":"10.1109\/ICCV.2019.00624"},{"key":"e_1_2_7_28_1","doi-asserted-by":"publisher","DOI":"10.1109\/TPAMI.2020.2974830"},{"key":"e_1_2_7_29_1","article-title":"From Open Set to Closed Set: Supervised Spatial Divide\u2010and\u2010Conquer for Object Counting","author":"Xiong H.","year":"2020","journal-title":"Proc. IEEE Int. Conf. Comput. Vis"},{"key":"e_1_2_7_30_1","doi-asserted-by":"crossref","unstructured":"Zeng L. et\u00a0al.:Multi\u2010scale convolutional neural networks for crowd counting. In:Proceedings of IEEE International Conference on Image Processing (ICIP).Beijing China pp.465\u2013469(2017)","DOI":"10.1109\/ICIP.2017.8296324"},{"key":"e_1_2_7_31_1","doi-asserted-by":"crossref","unstructured":"Sindagi V.A. Patel V.M.:Multi\u2010level bottom\u2010top and top\u2010bottom feature fusion for crowd counting. In:Proceedings of IEEE International Conference on Computer Vision (ICCV).Seoul Korea pp.1002\u20131012(2019)","DOI":"10.1109\/ICCV.2019.00109"},{"key":"e_1_2_7_32_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCSVT.2019.2919139"},{"key":"e_1_2_7_33_1","doi-asserted-by":"crossref","unstructured":"Liu X. Yang J. Ding W.:Adaptive mixture regression network with local counting map for crowd counting. In:European Conference on Computer Vision (ECCV).Glasgow England pp.241\u2013257(2020)","DOI":"10.1007\/978-3-030-58586-0_15"},{"key":"e_1_2_7_34_1","first-page":"1","article-title":"NWPU\u2010Crowd: A large\u2010scale benchmark for crowd counting and localization","volume":"99","author":"Wang Q.","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"e_1_2_7_35_1","doi-asserted-by":"crossref","unstructured":"Cheng Z. et\u00a0al.:Learning spatial awareness to improve crowd counting. In:Proceedings of IEEE International Conference on Computer Vision (ICCV).Seoul Korea pp.6151\u20136160(2019)","DOI":"10.1109\/ICCV.2019.00625"},{"key":"e_1_2_7_36_1","doi-asserted-by":"crossref","unstructured":"Liu W. Salzmann M. Fua P.:Context\u2010aware crowd counting. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Long Beach CA pp.5094\u20135103(2019)","DOI":"10.1109\/CVPR.2019.00524"},{"key":"e_1_2_7_37_1","first-page":"1","article-title":"Density\u2010aware curriculum learning for crowd counting","volume":"99","author":"Wang Q.","year":"2020","journal-title":"IEEE Trans. Cybern."},{"key":"e_1_2_7_38_1","doi-asserted-by":"publisher","DOI":"10.1109\/TCYB.2020.3033428"},{"key":"e_1_2_7_39_1","doi-asserted-by":"crossref","unstructured":"Zhang Y. et\u00a0al.:Single\u2010image crowd counting via multi\u2010column convolutional neural network. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas pp.589\u2013597(2016)","DOI":"10.1109\/CVPR.2016.70"},{"key":"e_1_2_7_40_1","doi-asserted-by":"crossref","unstructured":"Idrees H. et\u00a0al.:Multi\u2010source multi\u2010scale counting in extremely dense crowd images. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Portland Oregon pp 2547\u20132554(2013)","DOI":"10.1109\/CVPR.2013.329"},{"key":"e_1_2_7_41_1","doi-asserted-by":"crossref","unstructured":"Zhang C. et\u00a0al.:Cross\u2010scene crowd counting via deep convolutional neural networks. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Boston pp.833\u2013841(2015)","DOI":"10.1109\/CVPR.2016.70"},{"key":"e_1_2_7_42_1","doi-asserted-by":"crossref","unstructured":"Chen K. et\u00a0al.:Feature mining for localised crowd counting. In:Proceedings of BMVC.Bristol UK pp.1\u20133(2012)","DOI":"10.5244\/C.26.21"},{"key":"e_1_2_7_43_1","doi-asserted-by":"publisher","DOI":"10.1049\/iet-cvi.2019.0085"},{"key":"e_1_2_7_44_1","doi-asserted-by":"crossref","unstructured":"Xu B. Qiu G.:Crowd density estimation based on rich features and random projection forest. In:IEEE Winter Conference on Applications of Computer Vision (WACV).Nevada pp.1\u20138(2016)","DOI":"10.1109\/WACV.2016.7477682"},{"key":"e_1_2_7_45_1","doi-asserted-by":"publisher","DOI":"10.1007\/s00371-019-01769-5"},{"key":"e_1_2_7_46_1","doi-asserted-by":"crossref","unstructured":"Siva P. et\u00a0al.:Real\u2010time embedded scene invariant crowd counting using scale\u2010normalized histogram of moving gradients (HoMG). In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Las Vegas pp.885\u2013892(2016)","DOI":"10.1109\/CVPRW.2016.115"}],"container-title":["IET Image Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1049\/ipr2.12175","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1049\/ipr2.12175","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1049\/ipr2.12175","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,10,20]],"date-time":"2022-10-20T14:38:09Z","timestamp":1666276689000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1049\/ipr2.12175"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,3,18]]},"references-count":45,"journal-issue":{"issue":"14","published-print":{"date-parts":[[2021,12]]}},"alternative-id":["10.1049\/ipr2.12175"],"URL":"https:\/\/doi.org\/10.1049\/ipr2.12175","archive":["Portico"],"relation":{},"ISSN":["1751-9659","1751-9667"],"issn-type":[{"value":"1751-9659","type":"print"},{"value":"1751-9667","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,3,18]]}}}