{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:28:18Z","timestamp":1726849698744},"reference-count":29,"publisher":"Institution of Engineering and Technology (IET)","issue":"2","license":[{"start":{"date-parts":[[2019,2,1]],"date-time":"2019-02-01T00:00:00Z","timestamp":1548979200000},"content-version":"vor","delay-in-days":0,"URL":"http:\/\/onlinelibrary.wiley.com\/termsAndConditions#vor"},{"start":{"date-parts":[[2019,2,1]],"date-time":"2019-02-01T00:00:00Z","timestamp":1548979200000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/doi.wiley.com\/10.1002\/tdm_license_1.1"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["IET Image Processing"],"published-print":{"date-parts":[[2019,2]]},"DOI":"10.1049\/iet-ipr.2018.5776","type":"journal-article","created":{"date-parts":[[2018,11,2]],"date-time":"2018-11-02T02:18:41Z","timestamp":1541125121000},"page":"365-374","source":"Crossref","is-referenced-by-count":28,"title":["High\u2010density impulse noise detection and removal using deep convolutional neural network with particle swarm optimisation"],"prefix":"10.1049","volume":"13","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-7186-7686","authenticated-orcid":false,"given":"Hui Ying","family":"Khaw","sequence":"first","affiliation":[{"name":"Department of Electrical Engineering, Faculty of EngineeringUniversity of Malaya50603Kuala LumpurMalaysia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7593-5308","authenticated-orcid":false,"given":"Foo Chong","family":"Soon","sequence":"additional","affiliation":[{"name":"Department of Electrical Engineering, Faculty of EngineeringUniversity of Malaya50603Kuala LumpurMalaysia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-9058-3497","authenticated-orcid":false,"given":"Joon Huang","family":"Chuah","sequence":"additional","affiliation":[{"name":"Department of Electrical Engineering, Faculty of EngineeringUniversity of Malaya50603Kuala LumpurMalaysia"}]},{"given":"Chee\u2010Onn","family":"Chow","sequence":"additional","affiliation":[{"name":"Department of Electrical Engineering, Faculty of EngineeringUniversity of Malaya50603Kuala LumpurMalaysia"}]}],"member":"265","published-online":{"date-parts":[[2019,2]]},"reference":[{"issue":"4","key":"e_1_2_7_2_1","doi-asserted-by":"crossref","first-page":"1663","DOI":"10.1109\/TIP.2011.2172804","article-title":"A universal denoising framework with a new impulse detector and nonlocal means","volume":"21","author":"Bo X.","year":"2012","journal-title":"IEEE Trans. Image Process."},{"key":"e_1_2_7_3_1","volume-title":"Fundamentals of nonlinear digital filtering","author":"Astola J.","year":"1997"},{"issue":"7","key":"e_1_2_7_4_1","doi-asserted-by":"crossref","first-page":"976","DOI":"10.1049\/iet-ipr.2011.0312","article-title":"Improved decision\u2010based detail\u2010preserving variational method for removal of random\u2010valued impulse noise","volume":"6","author":"Zhou Y.Y.","year":"2012","journal-title":"IET Image Process."},{"key":"e_1_2_7_5_1","doi-asserted-by":"publisher","DOI":"10.1109\/LSP.2011.2162583"},{"key":"e_1_2_7_6_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2005.852196"},{"key":"e_1_2_7_7_1","doi-asserted-by":"publisher","DOI":"10.1109\/LSP.2006.884018"},{"issue":"3","key":"e_1_2_7_8_1","doi-asserted-by":"crossref","first-page":"281","DOI":"10.1109\/LSP.2009.2038769","article-title":"Noise adaptive fuzzy switching median filter for salt\u2010and\u2010pepper noise reduction","volume":"17","author":"Toh K.K.V.","year":"2010","journal-title":"IEEE Signal Process. Lett."},{"issue":"15","key":"e_1_2_7_9_1","doi-asserted-by":"crossref","first-page":"1657","DOI":"10.1016\/j.patrec.2004.05.025","article-title":"Adaptive fuzzy switching filter for images corrupted by impulse noise","volume":"25","author":"Xu H.","year":"2004","journal-title":"Pattern Recognit. Lett."},{"key":"e_1_2_7_10_1","doi-asserted-by":"publisher","DOI":"10.1007\/s11760-010-0186-4"},{"issue":"4","key":"e_1_2_7_11_1","doi-asserted-by":"crossref","first-page":"1956","DOI":"10.1109\/TCE.2008.4711258","article-title":"Salt\u2010and\u2010pepper noise detection and reduction using fuzzy switching median filter","volume":"54","author":"Toh K.K.V.","year":"2008","journal-title":"IEEE Trans. Consum. Electron."},{"issue":"1","key":"e_1_2_7_12_1","first-page":"296","article-title":"Turbulent\u2010PSO\u2010based fuzzy image filter with no\u2010reference measures for high\u2010density impulse noise","volume":"43","author":"Chou H.H.","year":"2013","journal-title":"IEEE Trans. Consum. Electron."},{"key":"e_1_2_7_13_1","doi-asserted-by":"publisher","DOI":"10.1049\/iet-ipr.2013.0146"},{"key":"e_1_2_7_14_1","doi-asserted-by":"publisher","DOI":"10.1049\/iet-ipr.2014.0286"},{"key":"e_1_2_7_15_1","first-page":"381","article-title":"Breast cancer diagnosis in DCE\u2010MRI using mixture ensemble ofconvolutional neural networks","volume":"72","author":"Rasti R.","year":"2017","journal-title":"PatternRecognit."},{"key":"e_1_2_7_16_1","first-page":"1","article-title":"PCANet\u2010based convolutional neural network architecture for avehicle model recognition system","author":"Soon F.C.","year":"2018","journal-title":"IEEE Trans.Intell. Transp. Syst."},{"key":"e_1_2_7_17_1","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.patcog.2017.06.031","article-title":"Effective training of convolutional neural networks for face\u2010based gender and age prediction","volume":"72","author":"Antipov G.","year":"2017","journal-title":"Pattern Recognit."},{"key":"e_1_2_7_18_1","doi-asserted-by":"publisher","DOI":"10.1049\/iet-ipr.2017.0374"},{"key":"e_1_2_7_19_1","unstructured":"2017 TENCON 2017\u20132017 IEEE Region 10 Conf. Penang Malaysia J.H. Chuah H.Y. Khaw F.C. Soon Detection of Gaussian noise and its level using deep convolutional neural network 2447 2450"},{"key":"e_1_2_7_20_1","unstructured":"2012 IEEE Conf. on Computer Vision and PatternRecognition Providence USA H.C. Burger C.J. Schuler S. Harmeling Image denoising: Can plain neural networks compete withBM3D? 2392 2399"},{"key":"e_1_2_7_21_1","unstructured":"2015 2015 Int. Conf. on Wireless Communications & Signal Processing (WCSP) Nanjing China X. Wang Q. Tao L. Wang Deep convolutional architecture for natural image denoising 1 4"},{"key":"e_1_2_7_22_1","doi-asserted-by":"publisher","DOI":"10.1109\/TIP.2017.2662206"},{"key":"e_1_2_7_23_1","volume-title":"Swarm intelligence","author":"Kennedy J.","year":"2001"},{"key":"e_1_2_7_24_1","unstructured":"2012 Proc. of the 25th Int. Conf. on NeuralInformation Processing Systems Curran Associates Inc. Lake Tahoe USA A. Krizhevsky I. Sutskever G.E. Hinton ImageNet classification with deep convolutional neuralnetworks"},{"key":"e_1_2_7_25_1","unstructured":"SimonyanK. andZissermanA.: \u2018Very deep convolutional networks for large\u2010scale image recognition\u2019 arXiv preprint arXiv:1409.1556 2014"},{"issue":"16","key":"e_1_2_7_26_1","doi-asserted-by":"crossref","first-page":"3851","DOI":"10.1016\/j.neucom.2009.05.004","article-title":"Adaptive particle swarm optimization for CNN associativememories design","volume":"72","author":"Fornarelli G.","year":"2009","journal-title":"Neurocomputing"},{"key":"e_1_2_7_27_1","doi-asserted-by":"publisher","DOI":"10.1109\/83.370679"},{"issue":"5","key":"e_1_2_7_28_1","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1109\/LSP.2011.2122333","article-title":"Removal of high density salt and pepper noise through modified decision based unsymmetric trimmed median filter","volume":"18","author":"Esakkirajan S.","year":"2011","journal-title":"IEEE Signal Process. Lett."},{"issue":"7","key":"e_1_2_7_29_1","doi-asserted-by":"crossref","first-page":"3157","DOI":"10.1109\/TIP.2012.2189577","article-title":"Cognition and removal of impulse noise with uncertainty","volume":"21","author":"Zhe Z.","year":"2012","journal-title":"IEEE Trans. Image Process."},{"key":"e_1_2_7_30_1","unstructured":"2013 Pattern Recognition: 35th German Conf. Gcpr 2013 Saarbr\u00fccken Germany H.C. Burger C. Schuler S. Harmeling \u2018Learning how to combine internal and external denoising methods"}],"container-title":["IET Image Processing"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1049\/iet-ipr.2018.5776","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/full-xml\/10.1049\/iet-ipr.2018.5776","content-type":"application\/xml","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/pdf\/10.1049\/iet-ipr.2018.5776","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2021,1,14]],"date-time":"2021-01-14T23:50:05Z","timestamp":1610668205000},"score":1,"resource":{"primary":{"URL":"https:\/\/onlinelibrary.wiley.com\/doi\/10.1049\/iet-ipr.2018.5776"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,2]]},"references-count":29,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2019,2]]}},"alternative-id":["10.1049\/iet-ipr.2018.5776"],"URL":"https:\/\/doi.org\/10.1049\/iet-ipr.2018.5776","archive":["Portico"],"relation":{},"ISSN":["1751-9667","1751-9667"],"issn-type":[{"value":"1751-9667","type":"print"},{"value":"1751-9667","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,2]]}}}