{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,30]],"date-time":"2024-10-30T04:21:07Z","timestamp":1730262067331,"version":"3.28.0"},"reference-count":49,"publisher":"Springer Science and Business Media LLC","issue":"10","license":[{"start":{"date-parts":[[2023,10,2]],"date-time":"2023-10-02T00:00:00Z","timestamp":1696204800000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2023,10,2]],"date-time":"2023-10-02T00:00:00Z","timestamp":1696204800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"funder":[{"DOI":"10.13039\/100008460","name":"U.S. Department of Health & Human Services | NIH | National Center for Complementary and Integrative Health","doi-asserted-by":"publisher","award":["1DP2AT012345"],"id":[{"id":"10.13039\/100008460","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000006","name":"United States Department of Defense | United States Navy | Office of Naval Research","doi-asserted-by":"publisher","award":["N00014-22-1-2116","N00014-21-1-2357"],"id":[{"id":"10.13039\/100000006","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/100000121","name":"NSF | Directorate for Mathematical & Physical Sciences | Division of Mathematical Sciences","doi-asserted-by":"publisher","award":["DMS-2022448"],"id":[{"id":"10.13039\/100000121","id-type":"DOI","asserted-by":"publisher"}]},{"name":"MIT-IBM Watson AI Lab, MIT J-Clinic for Machine Learning and Health, Eric and Wendy Schmidt Center at the Broad Institute, Simons Investigator Award"},{"name":"MIT-IBM Watson AI Lab, MIT J-Clinic for Machine Learning and Health, Eric and Wendy Schmidt Center at the Broad Institute"},{"name":"MIT-IBM Watson AI Lab, MIT J-Clinic for Machine Learning and Health, Eric and Wendy Schmidt Center at the Broad Institute, NSF Graduate Fellowship"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Nat Mach Intell"],"DOI":"10.1038\/s42256-023-00719-0","type":"journal-article","created":{"date-parts":[[2023,10,2]],"date-time":"2023-10-02T16:02:13Z","timestamp":1696262533000},"page":"1066-1075","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":8,"title":["Active learning for optimal intervention design in causal models"],"prefix":"10.1038","volume":"5","author":[{"ORCID":"http:\/\/orcid.org\/0000-0001-9039-6843","authenticated-orcid":false,"given":"Jiaqi","family":"Zhang","sequence":"first","affiliation":[]},{"given":"Louis","family":"Cammarata","sequence":"additional","affiliation":[]},{"given":"Chandler","family":"Squires","sequence":"additional","affiliation":[]},{"given":"Themistoklis P.","family":"Sapsis","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7008-0216","authenticated-orcid":false,"given":"Caroline","family":"Uhler","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,10,2]]},"reference":[{"key":"719_CR1","doi-asserted-by":"publisher","first-page":"1110","DOI":"10.1016\/j.cell.2012.02.031","volume":"148","author":"AB Cherry","year":"2012","unstructured":"Cherry, A. B. & Daley, G. Q. Reprogramming cellular identity for regenerative medicine. Cell 148, 1110\u20131122 (2012).","journal-title":"Cell"},{"key":"719_CR2","doi-asserted-by":"publisher","first-page":"1226","DOI":"10.1038\/nn963","volume":"5","author":"E Todorov","year":"2002","unstructured":"Todorov, E. & Jordan, M. I. Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5, 1226\u20131235 (2002).","journal-title":"Nat. Neurosci."},{"key":"719_CR3","doi-asserted-by":"publisher","first-page":"1786","DOI":"10.1007\/s10409-021-01149-0","volume":"37","author":"AB Blanchard","year":"2021","unstructured":"Blanchard, A. B. et al. Bayesian optimization for active flow control. Acta Mech. Sin. 37, 1786\u20131798 (2021).","journal-title":"Acta Mech. Sin."},{"key":"719_CR4","doi-asserted-by":"publisher","first-page":"770","DOI":"10.1287\/opre.2018.1802","volume":"67","author":"N Sunar","year":"2019","unstructured":"Sunar, N., Birge, J. R. & Vitavasiri, S. Optimal dynamic product development and launch for a network of customers. Oper. Res. 67, 770\u2013790 (2019).","journal-title":"Oper. Res."},{"key":"719_CR5","doi-asserted-by":"publisher","first-page":"86","DOI":"10.1016\/j.futures.2013.08.002","volume":"53","author":"S Serrao-Neumann","year":"2013","unstructured":"Serrao-Neumann, S., Di Giulio, G. M., Ferreira, L. C. & Choy, D. L. Climate change adaptation: is there a role for intervention research? Futures 53, 86\u201397 (2013).","journal-title":"Futures"},{"key":"719_CR6","doi-asserted-by":"publisher","first-page":"249","DOI":"10.1007\/s10115-012-0507-8","volume":"35","author":"Y Fu","year":"2013","unstructured":"Fu, Y., Zhu, X. & Li, B. A survey on instance selection for active learning. Knowl. Inf. Syst. 35, 249\u2013283 (2013).","journal-title":"Knowl. Inf. Syst."},{"key":"719_CR7","unstructured":"Jesson, A. et al. Causal-BALD: deep Bayesian active learning of outcomes to infer treatment-effects from observational data. In Adv. Neural Information Processing Systems Vol. 34, 30465\u201330478 (NeurIPS, 2021)."},{"key":"719_CR8","doi-asserted-by":"publisher","first-page":"129","DOI":"10.1613\/jair.295","volume":"4","author":"DA Cohn","year":"1996","unstructured":"Cohn, D. A., Ghahramani, Z. & Jordan, M. I. Active learning with statistical models. J. Artif. Intell. Res. 4, 129\u2013145 (1996).","journal-title":"J. Artif. Intell. Res."},{"key":"719_CR9","doi-asserted-by":"publisher","unstructured":"Houlsby, N., Husz\u00e1r, F., Ghahramani, Z. & Lengyel, M. Bayesian active learning for classification and preference learning. Preprint at arXiv https:\/\/doi.org\/10.48550\/arXiv.1112.5745 (2011).","DOI":"10.48550\/arXiv.1112.5745"},{"key":"719_CR10","unstructured":"Lattimore, F., Lattimore, T. & Reid, M. D. Causal bandits: learning good interventions via causal inference. In Adv. Neural Information Processing Systems Vol. 29 (2016)."},{"key":"719_CR11","unstructured":"Lee, S. & Bareinboim, E. Structural causal bandits: where to intervene? In Adv. Neural Information Processing Systems Vol. 31 (2018)."},{"key":"719_CR12","unstructured":"Aglietti, V., Lu, X., Paleyes, A. & Gonz\u00e1lez, J. Causal Bayesian optimization. In Int. Conf. Artificial Intelligence and Statistics 3155\u20133164 (PMLR, 2020)."},{"key":"719_CR13","doi-asserted-by":"crossref","unstructured":"Alabed, S. & Yoneki, E. BoGraph: structured Bayesian optimization from logs for expensive systems with many parameters. In Proc. 2nd European Workshop on Machine Learning and Systems 45\u201353 (2022).","DOI":"10.1145\/3517207.3526977"},{"key":"719_CR14","unstructured":"Branchini, N., Aglietti, V., Dhir, N. & Damoulas, T. Causal entropy optimization. In Int. Conf. on Artificial Intelligence and Statistics 8586\u20138605 (PMLR, 2023)."},{"key":"719_CR15","doi-asserted-by":"publisher","first-page":"903","DOI":"10.1016\/j.cell.2014.07.020","volume":"158","author":"P Cahan","year":"2014","unstructured":"Cahan, P. et al. CellNet: network biology applied to stem cell engineering. Cell 158, 903\u2013915 (2014).","journal-title":"Cell"},{"key":"719_CR16","doi-asserted-by":"publisher","first-page":"740","DOI":"10.1016\/j.cell.2014.02.054","volume":"157","author":"P Kemmeren","year":"2014","unstructured":"Kemmeren, P. et al. Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors. Cell 157, 740\u2013752 (2014).","journal-title":"Cell"},{"key":"719_CR17","doi-asserted-by":"crossref","unstructured":"Spirtes, P., Glymour, C. N., Scheines, R. & Heckerman, D. Causation, Prediction, and Search (MIT Press, 2000).","DOI":"10.7551\/mitpress\/1754.001.0001"},{"key":"719_CR18","doi-asserted-by":"crossref","unstructured":"Pearl, J. Causality (Cambridge Univ. Press, 2009).","DOI":"10.1017\/CBO9780511803161"},{"key":"719_CR19","unstructured":"Rothenh\u00e4usler, D., Heinze, C., Peters, J. & Meinshausen, N. Backshift: learning causal cyclic graphs from unknown shift interventions. In Adv. Neural Information Processing Systems Vol. 28 (2015)."},{"key":"719_CR20","unstructured":"Zhang, J., Squires, C. & Uhler, C. Matching a desired causal state via shift interventions. In Adv. Neural Information Processing Systems Vol. 34 (2021)."},{"key":"719_CR21","doi-asserted-by":"publisher","first-page":"981","DOI":"10.1086\/525638","volume":"74","author":"F Eberhardt","year":"2007","unstructured":"Eberhardt, F. & Scheines, R. Interventions and causal inference. Philos. Sci. 74, 981\u2013995 (2007).","journal-title":"Philos. Sci."},{"key":"719_CR22","doi-asserted-by":"publisher","first-page":"299","DOI":"10.1038\/nrg3899","volume":"16","author":"O Shalem","year":"2015","unstructured":"Shalem, O., Sanjana, N. E. & Zhang, F. High-throughput functional genomics using CRISPR\u2013Cas9. Nat. Rev. Genet. 16, 299\u2013311 (2015).","journal-title":"Nat. Rev. Genet."},{"key":"719_CR23","doi-asserted-by":"publisher","first-page":"209","DOI":"10.1016\/j.cell.2022.11.026","volume":"186","author":"J Joung","year":"2023","unstructured":"Joung, J. et al. A transcription factor atlas of directed differentiation. Cell 186, 209\u2013229 (2023).","journal-title":"Cell"},{"key":"719_CR24","doi-asserted-by":"publisher","first-page":"2559","DOI":"10.1016\/j.cell.2022.05.013","volume":"185","author":"JM Replogle","year":"2022","unstructured":"Replogle, J. M. et al. Mapping information-rich genotype\u2013phenotype landscapes with genome-scale Perturb-seq. Cell 185, 2559\u20132575 (2022).","journal-title":"Cell"},{"key":"719_CR25","unstructured":"Sen, R., Shanmugam, K., Dimakis, A. G. & Shakkottai, S. Identifying best interventions through online importance sampling. In Int. Conf. Machine Learning 3057\u20133066 (PMLR, 2017)."},{"key":"719_CR26","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1017\/S0022112095002059","volume":"296","author":"P Koumoutsakos","year":"1995","unstructured":"Koumoutsakos, P. & Leonard, A. High-resolution simulations of the flow around an impulsively started cylinder using vortex methods. J. Fluid Mech. 296, 1\u201338 (1995).","journal-title":"J. Fluid Mech."},{"key":"719_CR27","doi-asserted-by":"publisher","first-page":"331","DOI":"10.1038\/ng.3487","volume":"48","author":"OJ Rackham","year":"2016","unstructured":"Rackham, O. J. et al. A predictive computational framework for direct reprogramming between human cell types. Nat. Genet. 48, 331\u2013335 (2016).","journal-title":"Nat. Genet."},{"key":"719_CR28","doi-asserted-by":"publisher","first-page":"1412","DOI":"10.1214\/aos\/1035844981","volume":"30","author":"D Geiger","year":"2002","unstructured":"Geiger, D. & Heckerman, D. Parameter priors for directed acyclic graphical models and the characterization of several probability distributions. Ann. Stat. 30, 1412\u20131440 (2002).","journal-title":"Ann. Stat."},{"key":"719_CR29","doi-asserted-by":"publisher","unstructured":"Kuipers, J. & Moffa, G. The interventional Bayesian Gaussian equivalent score for Bayesian causal inference with unknown soft interventions. Preprint at arXIv https:\/\/doi.org\/10.48550\/arXiv.2205.02602 (2022).","DOI":"10.48550\/arXiv.2205.02602"},{"key":"719_CR30","doi-asserted-by":"publisher","first-page":"1689","DOI":"10.1214\/14-AOS1217","volume":"42","author":"J Kuipers","year":"2014","unstructured":"Kuipers, J., Moffa, G. & Heckerman, D. Addendum on the scoring of Gaussian directed acyclic graphical models. Ann. Statist. 42, 1689\u20131691 (2014).","journal-title":"Ann. Statist."},{"key":"719_CR31","doi-asserted-by":"publisher","first-page":"354","DOI":"10.1214\/12-EJS675","volume":"6","author":"BJ Kleijn","year":"2012","unstructured":"Kleijn, B. J. & van der Vaart, A. W. The Bernstein\u2013von-Mises theorem under misspecification. Electron. J. Stat. 6, 354\u2013381 (2012).","journal-title":"Electron. J. Stat."},{"key":"719_CR32","doi-asserted-by":"publisher","first-page":"20190834","DOI":"10.1098\/rspa.2019.0834","volume":"476","author":"TP Sapsis","year":"2020","unstructured":"Sapsis, T. P. Output-weighted optimal sampling for Bayesian regression and rare event statistics using few samples. Proc. R. Soc. A 476, 20190834 (2020).","journal-title":"Proc. R. Soc. A"},{"key":"719_CR33","doi-asserted-by":"publisher","first-page":"11138","DOI":"10.1073\/pnas.1813263115","volume":"115","author":"MA Mohamad","year":"2018","unstructured":"Mohamad, M. A. & Sapsis, T. P. Sequential sampling strategy for extreme event statistics in nonlinear dynamical systems. Proc. Natl Acad. Sci. USA 115, 11138\u201311143 (2018).","journal-title":"Proc. Natl Acad. Sci. USA"},{"key":"719_CR34","unstructured":"Astudillo, R. & Frazier, P. Bayesian optimization of function networks. In Adv. Neural Information Processing Systems Vol. 34, 14463\u201314475 (NeurIPS, 2021)."},{"key":"719_CR35","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1561\/2200000024","volume":"5","author":"S Bubeck","year":"2012","unstructured":"Bubeck, S. et al. Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Found. Trends Mach. Learn. 5, 1\u2013122 (2012).","journal-title":"Found. Trends Mach. Learn."},{"key":"719_CR36","doi-asserted-by":"publisher","first-page":"332","DOI":"10.1038\/s41588-021-00779-1","volume":"53","author":"CJ Frangieh","year":"2021","unstructured":"Frangieh, C. J. et al. Multimodal pooled Perturb\u2013CITE-seq screens in patient models define mechanisms of cancer immune evasion. Nat. Genet. 53, 332\u2013341 (2021).","journal-title":"Nat. Genet."},{"key":"719_CR37","doi-asserted-by":"publisher","first-page":"439","DOI":"10.1007\/s00251-008-0303-5","volume":"60","author":"R Carretero","year":"2008","unstructured":"Carretero, R. et al. Analysis of HLA class I expression in progressing and regressing metastatic melanoma lesions after immunotherapy. Immunogenetics 60, 439\u2013447 (2008).","journal-title":"Immunogenetics"},{"key":"719_CR38","doi-asserted-by":"publisher","first-page":"806","DOI":"10.1158\/1078-0432.CCR-06-1820","volume":"13","author":"J Jaeger","year":"2007","unstructured":"Jaeger, J. et al. Gene expression signatures for tumor progression, tumor subtype, and tumor thickness in laser-microdissected melanoma tissues. Clin. Cancer Res. 13, 806\u2013815 (2007).","journal-title":"Clin. Cancer Res."},{"key":"719_CR39","doi-asserted-by":"publisher","first-page":"447","DOI":"10.3892\/ijmm.2017.3030","volume":"40","author":"Q Cheng","year":"2017","unstructured":"Cheng, Q. et al. SOX4 promotes melanoma cell migration and invasion though the activation of the NF-\u03baB signaling pathway. Int. J. Mol. Med. 40, 447\u2013453 (2017).","journal-title":"Int. J. Mol. Med."},{"key":"719_CR40","doi-asserted-by":"publisher","first-page":"319","DOI":"10.1214\/18-AOS1689","volume":"47","author":"X Cao","year":"2019","unstructured":"Cao, X., Khare, K. & Ghosh, M. Posterior graph selection and estimation consistency for high-dimensional Bayesian DAG models. Ann. Stat. 47, 319\u2013348 (2019).","journal-title":"Ann. Stat."},{"key":"719_CR41","unstructured":"Kirsch, A., Van Amersfoort, J. & Gal, Y. BatchBALD: efficient and diverse batch acquisition for deep Bayesian active learning. In Adv. Neural Information Processing Systems Vol. 32 (2019)."},{"key":"719_CR42","doi-asserted-by":"publisher","first-page":"261","DOI":"10.1038\/s41592-019-0686-2","volume":"17","author":"P Virtanen","year":"2020","unstructured":"Virtanen, P. et al. SciPy 1.0: fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261\u2013272 (2020).","journal-title":"Nat. Methods"},{"key":"719_CR43","doi-asserted-by":"crossref","unstructured":"Hagberg, A., Swart, P. & Schult, D. A. Exploring Network Structure, Dynamics, and Function Using NetworkX (Los Alamos National Lab, 2008).","DOI":"10.25080\/TCWV9851"},{"key":"719_CR44","unstructured":"Squires, C. CausalDAG: creation, manipulation, and learning of causal models. GitHub https:\/\/github.com\/uhlerlab\/causaldag (2018)."},{"key":"719_CR45","unstructured":"Reisach, A., Seiler, C. & Weichwald, S. Beware of the simulated DAG! Causal discovery benchmarks may be easy to game. In Adv. Neural Information Processing Systems Vol. 34, 27772\u201327784 (NeurIPS, 2021)."},{"key":"719_CR46","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1186\/s13059-017-1382-0","volume":"19","author":"FA Wolf","year":"2018","unstructured":"Wolf, F. A., Angerer, P. & Theis, F. J. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 19, 1\u20135 (2018).","journal-title":"Genome Biol."},{"key":"719_CR47","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1038\/s41467-018-04608-8","volume":"9","author":"A Abid","year":"2018","unstructured":"Abid, A., Zhang, M. J., Bagaria, V. K. & Zou, J. Exploring patterns enriched in a dataset with contrastive principal component analysis. Nat. Commun. 9, 1\u20137 (2018).","journal-title":"Nat. Commun."},{"key":"719_CR48","doi-asserted-by":"publisher","first-page":"795","DOI":"10.1093\/biomet\/asaa104","volume":"108","author":"L Solus","year":"2021","unstructured":"Solus, L., Wang, Y. & Uhler, C. Consistency guarantees for greedy permutation-based causal inference algorithms. Biometrika 108, 795\u2013814 (2021).","journal-title":"Biometrika"},{"key":"719_CR49","doi-asserted-by":"publisher","unstructured":"Zhang, J. uhlerlab\/actlearn_optint: v1, July. Zenodo https:\/\/doi.org\/10.5281\/zenodo.8170179 (2023).","DOI":"10.5281\/zenodo.8170179"}],"container-title":["Nature Machine Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.nature.com\/articles\/s42256-023-00719-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s42256-023-00719-0","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s42256-023-00719-0.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,29]],"date-time":"2024-10-29T21:31:21Z","timestamp":1730237481000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.nature.com\/articles\/s42256-023-00719-0"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,10,2]]},"references-count":49,"journal-issue":{"issue":"10","published-online":{"date-parts":[[2023,10]]}},"alternative-id":["719"],"URL":"https:\/\/doi.org\/10.1038\/s42256-023-00719-0","relation":{},"ISSN":["2522-5839"],"issn-type":[{"type":"electronic","value":"2522-5839"}],"subject":[],"published":{"date-parts":[[2023,10,2]]},"assertion":[{"value":"25 November 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"14 August 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"2 October 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"The authors declare no competing interests.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}]}}