{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,19]],"date-time":"2024-11-19T17:42:45Z","timestamp":1732038165737},"reference-count":55,"publisher":"Springer Science and Business Media LLC","issue":"2","license":[{"start":{"date-parts":[[2019,2,11]],"date-time":"2019-02-11T00:00:00Z","timestamp":1549843200000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"},{"start":{"date-parts":[[2019,2,11]],"date-time":"2019-02-11T00:00:00Z","timestamp":1549843200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/www.springernature.com\/gp\/researchers\/text-and-data-mining"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["Nat Mach Intell"],"DOI":"10.1038\/s42256-019-0018-3","type":"journal-article","created":{"date-parts":[[2019,2,11]],"date-time":"2019-02-11T16:03:30Z","timestamp":1549901010000},"page":"112-119","update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":101,"title":["An integrated iterative annotation technique for easing neural network training in medical image analysis"],"prefix":"10.1038","volume":"1","author":[{"given":"Brendon","family":"Lutnick","sequence":"first","affiliation":[]},{"given":"Brandon","family":"Ginley","sequence":"additional","affiliation":[]},{"given":"Darshana","family":"Govind","sequence":"additional","affiliation":[]},{"given":"Sean D.","family":"McGarry","sequence":"additional","affiliation":[]},{"given":"Peter S.","family":"LaViolette","sequence":"additional","affiliation":[]},{"given":"Rabi","family":"Yacoub","sequence":"additional","affiliation":[]},{"given":"Sanjay","family":"Jain","sequence":"additional","affiliation":[]},{"given":"John E.","family":"Tomaszewski","sequence":"additional","affiliation":[]},{"given":"Kuang-Yu","family":"Jen","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2450-5233","authenticated-orcid":false,"given":"Pinaki","family":"Sarder","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2019,2,11]]},"reference":[{"key":"18_CR1","doi-asserted-by":"publisher","first-page":"84","DOI":"10.1145\/3065386","volume":"60","author":"A Krizhevsky","year":"2017","unstructured":"Krizhevsky, A., Sutskever, I. & Hinton, G. E. ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84\u201390 (2017).","journal-title":"Commun. ACM"},{"key":"18_CR2","unstructured":"LeCun, Y. & Bengio, Y. in The Handbook of Brain Theory and Neural Networks (ed. Michael, A. A.) 255\u2013258 (MIT Press, Cambridge, 1998)."},{"key":"18_CR3","doi-asserted-by":"publisher","first-page":"436","DOI":"10.1038\/nature14539","volume":"521","author":"Y LeCun","year":"2015","unstructured":"LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436\u2013444 (2015).","journal-title":"Nature"},{"key":"18_CR4","doi-asserted-by":"crossref","unstructured":"Pedraza, A. et al. Glomerulus classification with convolutional neural networks. In Proc. Medical Image Understanding and Analysis: 21st Annual Conference, MIUA 2017 (eds Vald\u00e9s Hern\u00e1ndez, M. & Gonz\u00e1lez-Castro, V.) 839\u2013849 (Springer, 2017).","DOI":"10.1007\/978-3-319-60964-5_73"},{"key":"18_CR5","doi-asserted-by":"publisher","first-page":"85","DOI":"10.1016\/j.neunet.2014.09.003","volume":"61","author":"J Schmidhuber","year":"2015","unstructured":"Schmidhuber, J. Deep learning in neural networks: an overview. Neural Netw. 61, 85\u2013117 (2015).","journal-title":"Neural Netw."},{"key":"18_CR6","doi-asserted-by":"crossref","unstructured":"Bottou, L. Large-scale machine learning with stochastic gradient descent. In Proc. COMPSTAT\u20192010 (eds Lechevallier, Y. & Saporta, G.) 177\u2013186 (Springer, 2010).","DOI":"10.1007\/978-3-7908-2604-3_16"},{"key":"18_CR7","doi-asserted-by":"crossref","unstructured":"Szegedy, C. et al. Going deeper with convolutions. In IEEE Conference on Computer Vision and Pattern Recognition (IEEE, 2015).","DOI":"10.1109\/CVPR.2015.7298594"},{"key":"18_CR8","unstructured":"Swingler, K. Applying Neural Networks: A Practical Guide (Morgan Kaufmann, Burlington, 1996)."},{"key":"18_CR9","doi-asserted-by":"crossref","unstructured":"Ronneberger, O., Fischer, P. & Brox, T. U-net: convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention (eds Navab, N., Hornegger, J., Wells, W. M. & Frangi, A. F.) (Springer, 2015).","DOI":"10.1007\/978-3-319-24574-4_28"},{"key":"18_CR10","doi-asserted-by":"publisher","first-page":"64","DOI":"10.1109\/TNSRE.2005.863840","volume":"14","author":"T Zhang","year":"2006","unstructured":"Zhang, T. & Nakamura, M. Neural network-based hybrid human-in-the-loop control for meal assistance orthosis. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 64\u201375 (2006).","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"18_CR11","unstructured":"Krogh, A. & Vedelsby, J. in Advances in Neural Information Processing Systems (1995)."},{"key":"18_CR12","first-page":"201","volume":"15","author":"D Cohn","year":"1994","unstructured":"Cohn, D., Atlas, L. & Ladner, R. Improving generalization with active learning. Mach. Learn. 15, 201\u2013221 (1994).","journal-title":"Mach. Learn."},{"key":"18_CR13","doi-asserted-by":"publisher","first-page":"1200","DOI":"10.1109\/TIP.2008.924286","volume":"17","author":"PH Gosselin","year":"2008","unstructured":"Gosselin, P. H. & Cord, M. Active learning methods for interactive image retrieval. IEEE Trans. Image Process. 17, 1200\u20131211 (2008).","journal-title":"IEEE Trans. Image Process."},{"key":"18_CR14","doi-asserted-by":"crossref","unstructured":"Shi, L. & Wang, X.-c. Artificial neural networks: current applications in modern medicine. In Computer and Communication Technologies in Agriculture Engineering, 2010 International Conference (IEEE, 2010).","DOI":"10.1109\/CCTAE.2010.5543470"},{"key":"18_CR15","doi-asserted-by":"publisher","first-page":"170","DOI":"10.1016\/j.media.2016.06.037","volume":"33","author":"A Madabhushi","year":"2016","unstructured":"Madabhushi, A. & Lee, G. Image analysis and machine learning in digital pathology: challenges and opportunities. Med. Image Anal. 33, 170\u2013175 (2016).","journal-title":"Med. Image Anal."},{"key":"18_CR16","doi-asserted-by":"publisher","first-page":"1.1.1-8","DOI":"10.1002\/0471250953.bi0101s50","volume":"50","author":"AD Baxevanis","year":"2015","unstructured":"Baxevanis, A. D. & Bateman, A. The importance of biological databases in biological discovery. Curr. Protoc. Bioinformatics 50, 1.1.1-8 (2015).","journal-title":"Curr. Protoc. Bioinformatics"},{"key":"18_CR17","doi-asserted-by":"crossref","unstructured":"Cheplygina, V. et al. in Deep Learning and Data Labeling for Medical Applications 209\u2013218 (Springer, New York, 2016).","DOI":"10.1007\/978-3-319-46976-8_22"},{"key":"18_CR18","doi-asserted-by":"publisher","first-page":"80","DOI":"10.7326\/0003-4819-108-1-80","volume":"108","author":"P Szolovits","year":"1988","unstructured":"Szolovits, P., Patil, R. S. & Schwartz, W. B. Artificial intelligence in medical diagnosis. Ann. Intern. Med. 108, 80\u201387 (1988).","journal-title":"Ann. Intern. Med."},{"key":"18_CR19","doi-asserted-by":"publisher","first-page":"21","DOI":"10.2174\/1874431100802010021","volume":"2","author":"W Orthuber","year":"2008","unstructured":"Orthuber, W. et al. Design of a global medical database which is searchable by human diagnostic patterns. Open Med. Inform. J. 2, 21 (2008).","journal-title":"Open Med. Inform. J."},{"key":"18_CR20","doi-asserted-by":"publisher","first-page":"1349","DOI":"10.1109\/34.895972","volume":"22","author":"AW Smeulders","year":"2000","unstructured":"Smeulders, A. W. et al. Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1349\u20131380 (2000).","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"18_CR21","doi-asserted-by":"publisher","first-page":"1","DOI":"10.1016\/j.ijmedinf.2003.11.024","volume":"73","author":"H M\u00fcller","year":"2004","unstructured":"M\u00fcller, H. et al. A review of content-based image retrieval systems in medical applications\u2014clinical benefits and future directions. Int. J. Med. Inform. 73, 1\u201323 (2004).","journal-title":"Int. J. Med. Inform."},{"key":"18_CR22","doi-asserted-by":"crossref","unstructured":"Gong, T. et al. Automatic pathology annotation on medical images: a statistical machine translation framework. In Proc. 20th International Conference on Pattern Recognition (IEEE, 2010).","DOI":"10.1109\/ICPR.2010.613"},{"key":"18_CR23","doi-asserted-by":"crossref","unstructured":"Abe, N., Zadrozny, B. & Langford, J. Outlier detection by active learning. In Proc. 12th ACM SIGKDD International Conference on Knowledge discovery and Data mining (ACM, 2006).","DOI":"10.1145\/1150402.1150459"},{"key":"18_CR24","doi-asserted-by":"crossref","unstructured":"Doyle, S. & Madabhushi, A. Consensus of Ambiguity: Theory and Application of Active Learning for Biomedical Image Analysis (Springer, Berlin, 2010).","DOI":"10.1007\/978-3-642-16001-1_27"},{"key":"18_CR25","doi-asserted-by":"publisher","first-page":"834","DOI":"10.1109\/TPAMI.2017.2699184","volume":"40","author":"LC Chen","year":"2018","unstructured":"Chen, L.-C. et al. Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40, 834\u2013848 (2018).","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"18_CR26","unstructured":"Aperio Imagescope (Leica Biosystems); https:\/\/www.leicabiosystems.com\/digital-pathology\/manage\/aperio-imagescope\/"},{"key":"18_CR27","doi-asserted-by":"publisher","first-page":"36","DOI":"10.1109\/79.952804","volume":"18","author":"A Skodras","year":"2001","unstructured":"Skodras, A., Christopoulos, C. & Ebrahimi, T. The JPEG 2000 still image compression standard. IEEE Signal Process. Mag. 18, 36\u201358 (2001).","journal-title":"IEEE Signal Process. Mag."},{"key":"18_CR28","unstructured":"Sedeen Viewer (Pathcore); https:\/\/pathcore.com\/sedeen\/"},{"key":"18_CR29","doi-asserted-by":"crossref","unstructured":"Ginley, B., Tomaszewski, J. E. & Sarder, P. Automatic computational labeling of glomerular textural boundaries. In Proc. SPIE 10140, Medical Imaging 2017: Digital Pathology 101400G (2017).","DOI":"10.1117\/12.2254517"},{"key":"18_CR30","doi-asserted-by":"publisher","DOI":"10.1186\/s12859-015-0739-1","volume":"16","author":"T Kato","year":"2015","unstructured":"Kato, T. et al. Segmental HOG: new descriptor for glomerulus detection in kidney microscopy image. BMC Bioinformatics 16, 316 (2015).","journal-title":"BMC Bioinformatics"},{"key":"18_CR31","doi-asserted-by":"crossref","unstructured":"Sarder, P., Ginley, B. & Tomaszewski, J. E. Automated renal histopathology: digital extraction and quantification of renal pathology. In Proc. SPIE 9791, Medical Imaging 2016: Digital Pathology 97910F (2016).","DOI":"10.1117\/12.2217329"},{"key":"18_CR32","doi-asserted-by":"crossref","unstructured":"Simon, O., Yacoub, R., Jain, S., Tomaszewski, J. E. & Sarder, P. Multi-radial LBP features as a tool for rapid glomerular detection and assessment in whole slide histopathology images. Sci. Rep. 8, 2032 (2018).","DOI":"10.1038\/s41598-018-20453-7"},{"key":"18_CR33","doi-asserted-by":"crossref","unstructured":"Tesch, G. H & Allen, T. J. Rodent models of streptozotocin-induced diabetic nephropathy. Nephrology 12, 261\u2013216 (2007).","DOI":"10.1111\/j.1440-1797.2007.00796.x"},{"key":"18_CR34","doi-asserted-by":"publisher","first-page":"49","DOI":"10.1016\/j.cbi.2015.11.032","volume":"244","author":"SN Goyal","year":"2016","unstructured":"Goyal, S. N. et al. Challenges and issues with streptozotocin-induced diabetes - a clinically relevant animal model to understand the diabetes pathogenesis and evaluate therapeutics. Chem. Biol. Interact. 244, 49\u201363 (2016).","journal-title":"Chem. Biol. Interact."},{"key":"18_CR35","doi-asserted-by":"publisher","first-page":"279","DOI":"10.2147\/IJNRD.S103784","volume":"9","author":"M Kitada","year":"2016","unstructured":"Kitada, M., Ogura, Y. & Koya, D. Rodent models of diabetic nephropathy: their utility and limitations. Int. J. Nephrol. Renov. Dis. 9, 279\u2013290 (2016).","journal-title":"Int. J. Nephrol. Renov. Dis."},{"key":"18_CR36","first-page":"5.47","volume":"40","author":"KK Wu","year":"2008","unstructured":"Wu, K. K. & Huan, Y. Streptozotocin-induced diabetic models in mice and rats.Curr. Protoc. Pharmacol. 40, 5.47 (2008).","journal-title":"Curr. Protoc. Pharmacol."},{"key":"18_CR37","doi-asserted-by":"publisher","first-page":"296","DOI":"10.1197\/jamia.M1733","volume":"12","author":"G Hripcsak","year":"2005","unstructured":"Hripcsak, G. & Rothschild, A. S. Agreement, the F-measure, and reliability in information retrieval. J. Am. Med. Inform. Assoc. 12, 296\u2013298 (2005).","journal-title":"J. Am. Med. Inform. Assoc."},{"key":"18_CR38","doi-asserted-by":"crossref","unstructured":"Sokolova, M., Japkowicz, N. & Szpakowicz, S. Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation. In Australasian Joint Conference on Artificial Intelligence (eds Sattar, A. & Kang, B.-H.) (Springer, 2006).","DOI":"10.1007\/11941439_114"},{"key":"18_CR39","doi-asserted-by":"publisher","first-page":"429","DOI":"10.3233\/IDA-2002-6504","volume":"6","author":"N Japkowicz","year":"2002","unstructured":"Japkowicz, N. & Stephen, S. The class imbalance problem: A systematic study. Intell. Data Anal. 6, 429\u2013449 (2002).","journal-title":"Intell. Data Anal."},{"key":"18_CR40","doi-asserted-by":"publisher","first-page":"2770","DOI":"10.1681\/ASN.2006040325","volume":"17","author":"J Bariety","year":"2006","unstructured":"Bariety, J. et al. Parietal podocytes in normal human glomeruli. J. Am. Soc. Nephrol. 17, 2770\u20132780 (2006).","journal-title":"J. Am. Soc. Nephrol."},{"key":"18_CR41","doi-asserted-by":"publisher","first-page":"253","DOI":"10.1152\/physrev.00020.2002","volume":"83","author":"H Pavenstadt","year":"2003","unstructured":"Pavenstadt, H., Kriz, W. & Kretzler, M. Cell biology of the glomerular podocyte. Physiol. Rev. 83, 253\u2013307 (2003).","journal-title":"Physiol. Rev."},{"key":"18_CR42","doi-asserted-by":"publisher","first-page":"753","DOI":"10.1111\/j.1600-6143.2008.02159.x","volume":"8","author":"K Solez","year":"2008","unstructured":"Solez, K. et al. Banff 07 classification of renal allograft pathology: updates and future directions. Am. J. Transplant. 8, 753\u2013760 (2008).","journal-title":"Am. J. Transplant."},{"key":"18_CR43","doi-asserted-by":"publisher","first-page":"553","DOI":"10.1016\/j.kint.2017.04.041","volume":"92","author":"M Mengel","year":"2017","unstructured":"Mengel, M. Deconstructing interstitial fibrosis and tubular atrophy: a step toward precision medicine in renal transplantation. Kidney Int. 92, 553\u2013555 (2017).","journal-title":"Kidney Int."},{"key":"18_CR44","doi-asserted-by":"publisher","first-page":"2168","DOI":"10.2215\/CJN.03710416","volume":"11","author":"X Wang","year":"2016","unstructured":"Wang, X. et al. Glomerular pathology in dent disease and its association with kidney function. Clin. J. Am. Soc. Nephrol. 11, 2168\u20132176 (2016).","journal-title":"Clin. J. Am. Soc. Nephrol."},{"key":"18_CR45","doi-asserted-by":"publisher","first-page":"1179","DOI":"10.1016\/j.ijrobp.2018.04.044","volume":"101","author":"SD McGarry","year":"2018","unstructured":"McGarry, S. D. et al. Radio-pathomic maps of epithelium and lumen density predict the location of high-grade prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 101, 1179\u20131187 (2018).","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"18_CR46","doi-asserted-by":"publisher","first-page":"270","DOI":"10.1080\/21681163.2016.1141063","volume":"6","author":"A Janowczyk","year":"2016","unstructured":"Janowczyk, A. et al. A resolution adaptive deep hierarchical (RADHicaL) learning scheme applied to nuclear segmentation of digital pathology images. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 6, 270\u2013276 (2016).","journal-title":"Comput. Methods Biomech. Biomed. Eng. Imaging Vis"},{"key":"18_CR47","doi-asserted-by":"publisher","first-page":"1179","DOI":"10.1016\/j.ijrobp.2018.04.044","volume":"101","author":"SD McGarry","year":"2018","unstructured":"McGarry, S. D. et al. Radio-pathomic maps of epithelium and lumen density predict the location of high-grade prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 101, 1179\u20131187 (2018).","journal-title":"Int. J. Radiat. Oncol. Biol. Phys."},{"key":"18_CR48","first-page":"27","volume":"2","author":"T Bray","year":"1997","unstructured":"Bray, T. et al. Extensible markup language (XML). World Wide Web J. 2, 27\u201366 (1997).","journal-title":"World Wide Web J."},{"key":"18_CR49","unstructured":"Bradski, G. The OpenCV Library. Dr. Dobb\u2019s http:\/\/www.drdobbs.com\/open-source\/the-opencv-library\/184404319 (2000)."},{"key":"18_CR50","unstructured":"Klette, R. et al. Computer Vision (Springer, New York, 1998)"},{"key":"18_CR51","doi-asserted-by":"publisher","first-page":"27","DOI":"10.4103\/2153-3539.119005","volume":"4","author":"A Goode","year":"2013","unstructured":"Goode, A. et al. OpenSlide: a vendor-neutral software foundation for digital pathology. J. Pathol. Inform. 4, 27 (2013).","journal-title":"J. Pathol. Inform."},{"key":"18_CR52","unstructured":"Lu, C. & Mandal, M. Automated segmentation and analysis of the epidermis area in skin histopathological images. In 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (IEEE, 2012)."},{"key":"18_CR53","doi-asserted-by":"publisher","first-page":"027501","DOI":"10.1117\/1.JMI.5.2.027501","volume":"5","author":"D Govind","year":"2018","unstructured":"Govind, D. et al. Automated erythrocyte detection and classification from whole slide images. J. Med. Imaging 5, 027501 (2018).","journal-title":"J. Med. Imaging"},{"key":"18_CR54","unstructured":"Jung, A. imgaug (2017); http:\/\/imgaug.readthedocs.io\/en\/latest\/"},{"key":"18_CR55","doi-asserted-by":"publisher","first-page":"63","DOI":"10.1109\/TKDE.2006.17","volume":"18","author":"ZH Zhou","year":"2006","unstructured":"Zhou, Z.-H. & Liu, X.-Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng. 18, 63\u201377 (2006).","journal-title":"IEEE Trans. Knowl. Data Eng."}],"container-title":["Nature Machine Intelligence"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.nature.com\/articles\/s42256-019-0018-3","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s42256-019-0018-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s42256-019-0018-3.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,12,17]],"date-time":"2022-12-17T19:35:59Z","timestamp":1671305759000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.nature.com\/articles\/s42256-019-0018-3"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2019,2,11]]},"references-count":55,"journal-issue":{"issue":"2","published-online":{"date-parts":[[2019,2]]}},"alternative-id":["18"],"URL":"https:\/\/doi.org\/10.1038\/s42256-019-0018-3","relation":{},"ISSN":["2522-5839"],"issn-type":[{"value":"2522-5839","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,2,11]]},"assertion":[{"value":"12 October 2018","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"7 January 2019","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"11 February 2019","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"The authors declare no competing interests.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}]}}