{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T16:59:46Z","timestamp":1726851586767},"reference-count":134,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2023,3,18]],"date-time":"2023-03-18T00:00:00Z","timestamp":1679097600000},"content-version":"tdm","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"},{"start":{"date-parts":[[2023,3,18]],"date-time":"2023-03-18T00:00:00Z","timestamp":1679097600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0"}],"funder":[{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["52250610217"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"name":"the Wu Tsai Human Performance Alliance at Stanford University and the Joe and Clara Tsai Foundation"},{"DOI":"10.13039\/100000002","name":"U.S. Department of Health & Human Services | National Institutes of Health","doi-asserted-by":"publisher","award":["R01 AR077604","R01 EB002524","R01 AR079431","P41 EB027060"],"id":[{"id":"10.13039\/100000002","id-type":"DOI","asserted-by":"publisher"}]},{"name":"U.S. Department of Health & Human Services | National Institutes of Health"},{"name":"U.S. Department of Health & Human Services | National Institutes of Health"},{"name":"U.S. Department of Health & Human Services | National Institutes of Health"},{"name":"the Philips Healthcare, the Wu Tsai Human Performance Alliance at Stanford University, and the Joe and Clara Tsai Foundation"}],"content-domain":{"domain":["link.springer.com"],"crossmark-restriction":false},"short-container-title":["npj Digit. Med."],"abstract":"Abstract<\/jats:title>Anterior cruciate ligament (ACL) injury and ACL reconstruction (ACLR) surgery are common. Laboratory-based biomechanical assessment can evaluate ACL injury risk and rehabilitation progress after ACLR; however, lab-based measurements are expensive and inaccessible to most people. Portable sensors such as wearables and cameras can be deployed during sporting activities, in clinics, and in patient homes. Although many portable sensing approaches have demonstrated promising results during various assessments related to ACL injury, they have not yet been widely adopted as tools for out-of-lab assessment. The purpose of this review is to summarize research on out-of-lab portable sensing applied to ACL and ACLR and offer our perspectives on new opportunities for future research and development. We identified 49 original research articles on out-of-lab ACL-related assessment; the most common sensing modalities were inertial measurement units, depth cameras, and RGB cameras. The studies combined portable sensors with direct feature extraction, physics-based modeling, or machine learning to estimate a range of biomechanical parameters (e.g., knee kinematics and kinetics) during jump-landing tasks, cutting, squats, and gait. Many of the reviewed studies depict proof-of-concept methods for potential future clinical applications including ACL injury risk screening, injury prevention training, and rehabilitation assessment. By synthesizing these results, we describe important opportunities that exist for clinical validation of existing approaches, using sophisticated modeling techniques, standardization of data collection, and creation of large benchmark datasets. If successful, these advances will enable widespread use of portable-sensing approaches to identify ACL injury risk factors, mitigate high-risk movements prior to injury, and optimize rehabilitation paradigms.<\/jats:p>","DOI":"10.1038\/s41746-023-00782-2","type":"journal-article","created":{"date-parts":[[2023,3,26]],"date-time":"2023-03-26T20:01:43Z","timestamp":1679860903000},"update-policy":"http:\/\/dx.doi.org\/10.1007\/springer_crossmark_policy","source":"Crossref","is-referenced-by-count":11,"title":["A scoping review of portable sensing for out-of-lab anterior cruciate ligament injury prevention and rehabilitation"],"prefix":"10.1038","volume":"6","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-4639-8301","authenticated-orcid":false,"given":"Tian","family":"Tan","sequence":"first","affiliation":[]},{"given":"Anthony A.","family":"Gatti","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9531-3549","authenticated-orcid":false,"given":"Bingfei","family":"Fan","sequence":"additional","affiliation":[]},{"given":"Kevin G.","family":"Shea","sequence":"additional","affiliation":[]},{"given":"Seth L.","family":"Sherman","sequence":"additional","affiliation":[]},{"given":"Scott D.","family":"Uhlrich","sequence":"additional","affiliation":[]},{"given":"Jennifer L.","family":"Hicks","sequence":"additional","affiliation":[]},{"given":"Scott L.","family":"Delp","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8931-5743","authenticated-orcid":false,"given":"Peter B.","family":"Shull","sequence":"additional","affiliation":[]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3667-6796","authenticated-orcid":false,"given":"Akshay S.","family":"Chaudhari","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2023,3,18]]},"reference":[{"key":"782_CR1","doi-asserted-by":"crossref","unstructured":"Murray, M. M. The ACL Handbook: Knee Biology, Mechanics, and Treatment (eds Murray, M. M., Vavken, P. & Fleming, B.) p. 19\u201328 (Springer New York, 2013).","DOI":"10.1007\/978-1-4614-0760-7_2"},{"key":"782_CR2","doi-asserted-by":"crossref","first-page":"2363","DOI":"10.1177\/0363546514542796","volume":"42","author":"NA Mall","year":"2014","unstructured":"Mall, N. A. et al. Incidence and trends of anterior cruciate ligament reconstruction in the united states. Am. J. Sports Med. 42, 2363\u20132370 (2014).","journal-title":"Am. J. Sports Med."},{"key":"782_CR3","doi-asserted-by":"crossref","first-page":"2827","DOI":"10.1177\/0363546516651845","volume":"44","author":"KE Webster","year":"2016","unstructured":"Webster, K. E. & Feller, J. A. Exploring the high reinjury rate in younger patients undergoing anterior cruciate ligament reconstruction. Am. J. Sports Med. 44, 2827\u20132832 (2016).","journal-title":"Am. J. Sports Med."},{"key":"782_CR4","doi-asserted-by":"crossref","first-page":"587","DOI":"10.1177\/1941738120912846","volume":"12","author":"S Barber-Westin","year":"2020","unstructured":"Barber-Westin, S. & Noyes, F. R. One in 5 athletes sustain reinjury upon return to high-risk sports after acl reconstruction: a systematic review in 1239 athletes younger than 20 years. Sports Health 12, 587\u2013597 (2020).","journal-title":"Sports Health"},{"key":"782_CR5","doi-asserted-by":"crossref","first-page":"270","DOI":"10.1007\/s00167-007-0458-x","volume":"16","author":"M Nishimori","year":"2008","unstructured":"Nishimori, M. et al. Articular cartilage injury of the posterior lateral tibial plateau associated with acute anterior cruciate ligament injury. Knee Surg. Sports Traumatol. Arthrosc. 16, 270\u2013274 (2008).","journal-title":"Knee Surg. Sports Traumatol. Arthrosc."},{"key":"782_CR6","doi-asserted-by":"crossref","first-page":"1286","DOI":"10.1016\/j.joca.2011.07.015","volume":"19","author":"S Muthuri","year":"2011","unstructured":"Muthuri, S., McWilliams, D., Doherty, M. & Zhang, W. History of knee injuries and knee osteoarthritis: a meta-analysis of observational studies. Osteoarthritis Cartilage 19, 1286\u20131293 (2011).","journal-title":"Osteoarthritis Cartilage"},{"key":"782_CR7","doi-asserted-by":"crossref","first-page":"287","DOI":"10.1007\/s42978-020-00090-1","volume":"2","author":"JS Pedley","year":"2020","unstructured":"Pedley, J. S. et al. Utility of kinetic and kinematic jumping and landing variables as predictors of injury risk: a systematic review. J. Sci. Sport Exerc. 2, 287\u2013304 (2020).","journal-title":"J. Sci. Sport Exerc."},{"key":"782_CR8","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1080\/15438627.2014.881821","volume":"22","author":"G Hughes","year":"2014","unstructured":"Hughes, G. A review of recent perspectives on biomechanical risk factors associated with anterior cruciate ligament injury. Res. Sports Med. 22, 193\u2013212 (2014).","journal-title":"Res. Sports Med."},{"key":"782_CR9","doi-asserted-by":"crossref","first-page":"859","DOI":"10.1007\/s00167-009-0823-z","volume":"17","author":"E Alentorn-Geli","year":"2009","unstructured":"Alentorn-Geli, E. et al. Prevention of non-contact anterior cruciate ligament injuries in soccer players. part 2: a review of prevention programs aimed to modify risk factors and to reduce injury rates. Knee Surg. Sports Traumatol. Arthrosc. 17, 859\u2013879 (2009).","journal-title":"Knee Surg. Sports Traumatol. Arthrosc."},{"key":"782_CR10","doi-asserted-by":"crossref","first-page":"492","DOI":"10.1177\/0363546504269591","volume":"33","author":"TE Hewett","year":"2005","unstructured":"Hewett, T. E. et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: a prospective study. Am. J. Sports Med. 33, 492\u2013501 (2005).","journal-title":"Am. J. Sports Med."},{"key":"782_CR11","doi-asserted-by":"crossref","first-page":"684","DOI":"10.1177\/0363546512472043","volume":"41","author":"E Kristianslund","year":"2013","unstructured":"Kristianslund, E. & Krosshaug, T. Comparison of drop jumps and sport-specific sidestep cutting: implications for anterior cruciate ligament injury risk screening. Am. J. Sports Med. 41, 684\u2013688 (2013).","journal-title":"Am. J. Sports Med."},{"key":"782_CR12","doi-asserted-by":"crossref","first-page":"S13","DOI":"10.1016\/j.kjms.2011.08.004","volume":"28","author":"T-W Lu","year":"2012","unstructured":"Lu, T.-W. & Chang, C.-F. Biomechanics of human movement and its clinical applications. Kaohsiung J. Med. Sci. 28, S13\u2013S25 (2012).","journal-title":"Kaohsiung J. Med. Sci."},{"key":"782_CR13","doi-asserted-by":"crossref","first-page":"299","DOI":"10.1177\/0363546505284183","volume":"34","author":"TE Hewett","year":"2006","unstructured":"Hewett, T. E., Myer, G. D. & Ford, K. R. Anterior cruciate ligament injuries in female athletes: Part 1, mechanisms and risk factors. Am. J. Sports Med. 34, 299\u2013311 (2006).","journal-title":"Am. J. Sports Med."},{"key":"782_CR14","doi-asserted-by":"crossref","first-page":"1996","DOI":"10.1177\/0363546509343200","volume":"37","author":"DA Padua","year":"2009","unstructured":"Padua, D. A. et al. The landing error scoring system (less) is a valid and reliable clinical assessment tool of jump-landing biomechanics: the jumpacl study. The Am. J. Sports Med. 37, 1996\u20132002 (2009).","journal-title":"The Am. J. Sports Med."},{"key":"782_CR15","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/1758-2555-1-1","volume":"1","author":"M-H Lam","year":"2009","unstructured":"Lam, M.-H. et al. Knee stability assessment on anterior cruciate ligament injury: clinical and biomechanical approaches. BMC Sports Sci., Med. Rehabil. 1, 1\u20139 (2009).","journal-title":"BMC Sports Sci., Med. Rehabil."},{"key":"782_CR16","doi-asserted-by":"crossref","first-page":"402","DOI":"10.1016\/j.math.2014.11.003","volume":"20","author":"T Lange","year":"2015","unstructured":"Lange, T. et al. The reliability of physical examination tests for the diagnosis of anterior cruciate ligament rupture\u2013a systematic review. Man. Ther. 20, 402\u2013411 (2015).","journal-title":"Man. Ther."},{"key":"782_CR17","doi-asserted-by":"crossref","first-page":"1411","DOI":"10.1007\/s40279-019-01120-x","volume":"49","author":"B Pairot-de Fontenay","year":"2019","unstructured":"Pairot-de Fontenay, B. et al. Running biomechanics in individuals with anterior cruciate ligament reconstruction: a systematic review. Sports Med. 49, 1411\u20131424 (2019).","journal-title":"Sports Med."},{"key":"782_CR18","doi-asserted-by":"crossref","first-page":"2607","DOI":"10.1177\/03635465211026665","volume":"49","author":"KA Knurr","year":"2021","unstructured":"Knurr, K. A. et al. Running biomechanics before injury and 1 year after anterior cruciate ligament reconstruction in division i collegiate athletes. Am. J. Sports Med. 49, 2607\u20132614 (2021).","journal-title":"Am. J. Sports Med."},{"key":"782_CR19","doi-asserted-by":"crossref","first-page":"3423","DOI":"10.1177\/0363546519878432","volume":"47","author":"LM Batty","year":"2019","unstructured":"Batty, L. M., Feller, J. A., Hartwig, T., Devitt, B. M. & Webster, K. E. Single-leg squat performance and its relationship to extensor mechanism strength after anterior cruciate ligament reconstruction. Am. J. Sports Med. 47, 3423\u20133428 (2019).","journal-title":"Am. J. Sports Med."},{"key":"782_CR20","doi-asserted-by":"crossref","first-page":"232596712094632","DOI":"10.1177\/2325967120946328","volume":"8","author":"LM Batty","year":"2020","unstructured":"Batty, L. M. et al. Single-leg squat after anterior cruciate ligament reconstruction: an analysis of the knee valgus angle at 6 and 12 months. Orthop. J. Sports Med. 8, 2325967120946328 (2020).","journal-title":"Orthop. J. Sports Med."},{"key":"782_CR21","doi-asserted-by":"crossref","first-page":"2567","DOI":"10.1111\/sms.13259","volume":"28","author":"E King","year":"2018","unstructured":"King, E. et al. Whole-body biomechanical differences between limbs exist 9 months after acl reconstruction across jump\/landing tasks. Scand. J. Med. Sci. Sports 28, 2567\u20132578 (2018).","journal-title":"Scand. J. Med. Sci. Sports"},{"key":"782_CR22","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1136\/bjsm.2009.069526","volume":"44","author":"N Maffulli","year":"2010","unstructured":"Maffulli, N., Longo, U. G., Gougoulias, N., Loppini, M. & Denaro, V. Long-term health outcomes of youth sports injuries. Br. J. Sports Med. 44, 21\u201325 (2010).","journal-title":"Br. J. Sports Med."},{"key":"782_CR23","doi-asserted-by":"crossref","first-page":"1454","DOI":"10.1136\/bjsports-2018-100022","volume":"53","author":"E Poulsen","year":"2019","unstructured":"Poulsen, E. et al. Knee osteoarthritis risk is increased 4-6 fold after knee injury-a systematic review and meta-analysis. Br. J. Sports Med. 53, 1454\u20131463 (2019).","journal-title":"Br. J. Sports Med."},{"key":"782_CR24","doi-asserted-by":"crossref","first-page":"661","DOI":"10.1007\/s00167-014-3302-0","volume":"23","author":"Y Ma","year":"2015","unstructured":"Ma, Y. et al. Graft maturity of the reconstructed anterior cruciate ligament 6 months postoperatively: a magnetic resonance imaging evaluation of quadriceps tendon with bone block and hamstring tendon autografts. Knee Surg. Sports Traumatol. Arthrosc. 23, 661\u2013668 (2015).","journal-title":"Knee Surg. Sports Traumatol. Arthrosc."},{"key":"782_CR25","doi-asserted-by":"crossref","first-page":"1211","DOI":"10.1016\/S0003-9993(03)00034-0","volume":"84","author":"GJ Salem","year":"2003","unstructured":"Salem, G. J., Salinas, R. & Harding, F. V. Bilateral kinematic and kinetic analysis of the squat exercise after anterior cruciate ligament reconstruction. Arch. Phys. Med. Rehab. 84, 1211\u20131216 (2003).","journal-title":"Arch. Phys. Med. Rehab."},{"key":"782_CR26","doi-asserted-by":"crossref","first-page":"847","DOI":"10.4085\/1062-6050-52.6.06","volume":"52","author":"LV Slater","year":"2017","unstructured":"Slater, L. V., Hart, J. M., Kelly, A. R. & Kuenze, C. M. Progressive changes in walking kinematics and kinetics after anterior cruciate ligament injury and reconstruction: a review and meta-analysis. J. Athl. Train. 52, 847\u2013860 (2017).","journal-title":"J. Athl. Train."},{"key":"782_CR27","doi-asserted-by":"crossref","first-page":"597","DOI":"10.1136\/bjsports-2015-094797","volume":"50","author":"HF Hart","year":"2016","unstructured":"Hart, H. F. et al. Knee kinematics and joint moments during gait following anterior cruciate ligament reconstruction: a systematic review and meta-analysis. Br. J. Sports Med. 50, 597\u2013612 (2016).","journal-title":"Br. J. Sports Med."},{"key":"782_CR28","doi-asserted-by":"crossref","unstructured":"Della Villa, F., et al. Basketball Sports Medicine and Science (eds Laver, L. et al.) p. 723-736 (Springer Berlin Heidelberg, Berlin, Heidelberg, 2020).","DOI":"10.1007\/978-3-662-61070-1_57"},{"key":"782_CR29","doi-asserted-by":"crossref","unstructured":"Perry, A. et al. Acl rehabilitation: How can we lessen injury rates? Oper. Tech. Sports Med. 30, 150892 (2022).","DOI":"10.1016\/j.otsm.2022.150892"},{"key":"782_CR30","doi-asserted-by":"crossref","first-page":"e33521","DOI":"10.2196\/33521","volume":"9","author":"MJ Rose","year":"2022","unstructured":"Rose, M. J., Costello, K. E., Eigenbrot, S., Torabian, K. & Kumar, D. Inertial measurement units and application for remote health care in hip and knee osteoarthritis: Narrative review. JMIR Rehabil. Assist. Technol. 9, e33521 (2022).","journal-title":"JMIR Rehabil. Assist. Technol."},{"key":"782_CR31","doi-asserted-by":"crossref","first-page":"e202064","DOI":"10.1001\/jamanetworkopen.2020.2064","volume":"3","author":"JW O\u2019Sullivan","year":"2020","unstructured":"O\u2019Sullivan, J. W. et al. Accuracy of smartphone camera applications for detecting atrial fibrillation: a systematic review and meta-analysis. JAMA Netw. Open 3, e202064\u2013e202064 (2020).","journal-title":"JAMA Netw. Open"},{"key":"782_CR32","doi-asserted-by":"crossref","first-page":"462","DOI":"10.1016\/S1474-4422(19)30397-7","volume":"19","author":"E Warmerdam","year":"2020","unstructured":"Warmerdam, E. et al. Long-term unsupervised mobility assessment in movement disorders. Lancet Neurol. 19, 462\u2013470 (2020).","journal-title":"Lancet Neurol."},{"key":"782_CR33","doi-asserted-by":"crossref","first-page":"2331","DOI":"10.3390\/s21072331","volume":"21","author":"S Di Paolo","year":"2021","unstructured":"Di Paolo, S. et al. Rehabilitation and return to sport assessment after anterior cruciate ligament injury: quantifying joint kinematics during complex high-speed tasks through wearable sensors. Sensors 21, 2331 (2021).","journal-title":"Sensors"},{"key":"782_CR34","doi-asserted-by":"crossref","first-page":"724","DOI":"10.26603\/ijspt20190724","volume":"14","author":"CC Tipton","year":"2019","unstructured":"Tipton, C. C., Telfer, S., Cherones, A., Gee, A. O. & Kweon, C. Y. The use of microsoft kinect \u2122 for assessing readiness of return to sport and injury risk exercises: a validation study. Int. J. Sports Phys. Ther. 14, 724\u2013730 (2019).","journal-title":"Int. J. Sports Phys. Ther."},{"key":"782_CR35","doi-asserted-by":"crossref","first-page":"259","DOI":"10.3390\/s22010259","volume":"22","author":"A Guiotto","year":"2021","unstructured":"Guiotto, A. et al. Reliability and repeatability of ACL Quick Check\u00ae: a methodology for on field lower limb joint kinematics and kinetics assessment in sport applications. Sensors 22, 259 (2021).","journal-title":"Sensors"},{"key":"782_CR36","doi-asserted-by":"crossref","first-page":"e033832","DOI":"10.1136\/bmjopen-2019-033832","volume":"9","author":"SR Small","year":"2019","unstructured":"Small, S. R. et al. Current clinical utilisation of wearable motion sensors for the assessment of outcome following knee arthroplasty: a scoping review. BMJ Open 9, e033832 (2019).","journal-title":"BMJ Open"},{"key":"782_CR37","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41746-018-0076-7","volume":"2","author":"DR Seshadri","year":"2019","unstructured":"Seshadri, D. R. et al. Wearable sensors for monitoring the internal and external workload of the athlete. NPJ Digit. Med. 2, 1\u201318 (2019).","journal-title":"NPJ Digit. Med."},{"key":"782_CR38","doi-asserted-by":"crossref","first-page":"8221","DOI":"10.3390\/s21248221","volume":"21","author":"R Prill","year":"2021","unstructured":"Prill, R., Walter, M., Kr\u00b4olikowska, A. & Becker, R. A systematic review of diagnostic accuracy and clinical applications of wearable movement sensors for knee joint rehabilitation. Sensors 21, 8221 (2021).","journal-title":"Sensors"},{"key":"782_CR39","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.ptsp.2022.01.004","volume":"55","author":"JB Marques","year":"2022","unstructured":"Marques, J. B. et al. The use of wearable technology as an assessment tool to identify between-limb differences during functional tasks following acl reconstruction. a scoping review. Phys. Ther. Sport 55, 1\u201311 (2022).","journal-title":"Phys. Ther. Sport"},{"key":"782_CR40","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1002\/jor.25039","volume":"40","author":"AT Peebles","year":"2022","unstructured":"Peebles, A. T., Miller, T. K. & Queen, R. M. Landing biomechanics deficits in anterior cruciate ligament reconstruction patients can be assessed in a non-laboratory setting. J. Orthop. Res. 40, 150\u2013158 (2022).","journal-title":"J. Orthop. Res."},{"key":"782_CR41","doi-asserted-by":"crossref","first-page":"2328","DOI":"10.1109\/TMECH.2014.2376199","volume":"20","author":"OA Malik","year":"2015","unstructured":"Malik, O. A., Arosha Senanayake, S. M. N. & Zaheer, D. A multisensor integration-based complementary tool for monitoring recovery progress of anterior cruciate ligament-reconstructed subjects. IEEE\/ASME Trans. Mechatron. 20, 2328\u20132339 (2015).","journal-title":"IEEE\/ASME Trans. Mechatron."},{"key":"782_CR42","doi-asserted-by":"crossref","first-page":"498","DOI":"10.3109\/03091902.2013.837529","volume":"37","author":"SMN Arosha Senanayake","year":"2013","unstructured":"Arosha Senanayake, S. M. N., Ahmed Malik, O., Mohammad Iskandar, P. & Zaheer, D. Assessing post-anterior cruciate ligament reconstruction ambulation using wireless wearable integrated sensors. J. Med. Eng. Technol. 37, 498\u2013510 (2013).","journal-title":"J. Med. Eng. Technol."},{"key":"782_CR43","doi-asserted-by":"crossref","first-page":"453","DOI":"10.1109\/JBHI.2014.2320408","volume":"19","author":"OA Malik","year":"2015","unstructured":"Malik, O. A., Arosha Senanayake, S. & Zaheer, D. An intelligent recovery progress evaluation system for ACL reconstructed subjects using integrated 3-D kinematics and EMG features. IEEE J. Biomed. Health Inf. 19, 453\u2013463 (2015).","journal-title":"IEEE J. Biomed. Health Inf."},{"key":"782_CR44","doi-asserted-by":"crossref","first-page":"3141","DOI":"10.3390\/s21093141","volume":"21","author":"J Taborri","year":"2021","unstructured":"Taborri, J. et al. A machine-learning approach to measure the anterior cruciate ligament injury risk in female basketball players. Sensors 21, 3141 (2021).","journal-title":"Sensors"},{"key":"782_CR45","doi-asserted-by":"crossref","first-page":"5341","DOI":"10.3390\/s21165341","volume":"21","author":"L Molinaro","year":"2021","unstructured":"Molinaro, L. et al. Sensor-based indices for the prediction and monitoring of anterior cruciate ligament injury: reliability analysis and a case study in basketball. Sensors 21, 5341 (2021).","journal-title":"Sensors"},{"key":"782_CR46","doi-asserted-by":"crossref","DOI":"10.1038\/s41598-019-54399-1","volume":"9","author":"RD Gurchiek","year":"2019","unstructured":"Gurchiek, R. D. et al. Open-source remote gait analysis: a postsurgery patient monitoring application. Scientific Reports 9, 17966 (2019).","journal-title":"Scientific Reports"},{"key":"782_CR47","doi-asserted-by":"crossref","first-page":"33549","DOI":"10.1007\/s11042-019-08502-3","volume":"79","author":"G Kordatos","year":"2020","unstructured":"Kordatos, G. & Stavrakis, M. Design and evaluation of a wearable system to increase adherence to rehabilitation programmes in acute cruciate ligament (CL) rupture. Multimed. Tools Appl. 79, 33549\u201333574 (2020).","journal-title":"Multimed. Tools Appl."},{"key":"782_CR48","doi-asserted-by":"crossref","first-page":"084503","DOI":"10.1115\/1.3148858","volume":"131","author":"JL Riskowski","year":"2009","unstructured":"Riskowski, J. L., Mikesky, A. E., Bahamonde, R. E. & Burr, D. B. Design and validation of a knee brace with feedback to reduce the rate of loading. J. Biomech. Eng. 131, 084503 (2009).","journal-title":"J. Biomech. Eng."},{"key":"782_CR49","doi-asserted-by":"crossref","first-page":"242","DOI":"10.1016\/j.gaitpost.2010.05.002","volume":"32","author":"JL Riskowski","year":"2010","unstructured":"Riskowski, J. L. Gait and neuromuscular adaptations after using a feedback-based gait monitoring knee brace. Gait Posture 32, 242\u2013247 (2010).","journal-title":"Gait Posture"},{"key":"782_CR50","doi-asserted-by":"crossref","first-page":"e000557","DOI":"10.1136\/bmjsem-2019-000557","volume":"5","author":"MJ Dan","year":"2019","unstructured":"Dan, M. J. et al. Wearable inertial sensors and pressure MAT detect risk factors associated with ACL graft failure that are not possible with traditional return to sport assessments. BMJ Open Sport Exerc. Med. 5, e000557 (2019).","journal-title":"BMJ Open Sport Exerc. Med."},{"key":"782_CR51","doi-asserted-by":"crossref","first-page":"071008","DOI":"10.1115\/1.4004413","volume":"133","author":"AV Dowling","year":"2011","unstructured":"Dowling, A. V., Favre, J. & Andriacchi, T. P. A wearable system to assess risk for anterior cruciate ligament injury during jump landing: measurements of temporal events, jump height, and sagittal plane kinematics. J. Biomech. Eng. 133, 071008 (2011).","journal-title":"J. Biomech. Eng."},{"key":"782_CR52","doi-asserted-by":"crossref","first-page":"101","DOI":"10.1016\/S0736-0266(01)00081-X","volume":"20","author":"D Hurwitz","year":"2002","unstructured":"Hurwitz, D., Ryals, A., Case, J., Block, J. & Andriacchi, T. The knee adduction moment during gait in subjects with knee osteoarthritis is more closely correlated with static alignment than radiographic disease severity, toe out angle and pain. J. Orthop. Res. 20, 101\u2013107 (2002).","journal-title":"J. Orthop. Res."},{"key":"782_CR53","doi-asserted-by":"crossref","first-page":"1233","DOI":"10.1002\/1529-0131(199807)41:7<1233::AID-ART14>3.0.CO;2-L","volume":"41","author":"L Sharma","year":"1998","unstructured":"Sharma, L. et al. Knee adduction moment, serum hyaluronan level, and disease severity in medial tibiofemoral osteoarthritis. Arthritis Rheum. 41, 1233\u20131240 (1998).","journal-title":"Arthritis Rheum."},{"key":"782_CR54","doi-asserted-by":"crossref","first-page":"313","DOI":"10.1016\/j.clinbiomech.2007.10.003","volume":"23","author":"JT Blackburn","year":"2008","unstructured":"Blackburn, J. T. & Padua, D. A. Influence of trunk flexion on hip and knee joint kinematics during a controlled drop landing. Clin. Biomech. 23, 313\u2013319 (2008).","journal-title":"Clin. Biomech."},{"key":"782_CR55","doi-asserted-by":"crossref","first-page":"125","DOI":"10.1016\/j.jbiomech.2019.01.055","volume":"86","author":"AM Morgan","year":"2019","unstructured":"Morgan, A. M. & O\u2019Connor, K. M. Evaluation of an accelerometer to assess knee mechanics during a drop landing. J. Biomech. 86, 125\u2013131 (2019).","journal-title":"J. Biomech."},{"key":"782_CR56","doi-asserted-by":"crossref","first-page":"3460","DOI":"10.3390\/s18103460","volume":"18","author":"K Pratt","year":"2018","unstructured":"Pratt, K. & Sigward, S. Inertial sensor angular velocities reflect dynamic knee loading during single limb loading in individuals following anterior cruciate ligament reconstruction. Sensors 18, 3460 (2018).","journal-title":"Sensors"},{"key":"782_CR57","doi-asserted-by":"crossref","first-page":"114","DOI":"10.1016\/j.gaitpost.2016.06.021","volume":"49","author":"SM Sigward","year":"2016","unstructured":"Sigward, S. M., Chan, M.-S. M. & Lin, P. E. Characterizing knee loading asymmetry in individuals following anterior cruciate ligament reconstruction using inertial sensors. Gait Posture 49, 114\u2013119 (2016).","journal-title":"Gait Posture"},{"key":"782_CR58","doi-asserted-by":"crossref","first-page":"091006","DOI":"10.1115\/1.4007178","volume":"134","author":"AV Dowling","year":"2012","unstructured":"Dowling, A. V., Favre, J. & Andriacchi, T. P. Characterization of thigh and shank segment angular velocity during jump landing tasks commonly used to evaluate risk for ACL injury. J. Biomech. Eng. 134, 091006 (2012).","journal-title":"J. Biomech. Eng."},{"key":"782_CR59","doi-asserted-by":"crossref","first-page":"1075","DOI":"10.1177\/0363546512437529","volume":"40","author":"AV Dowling","year":"2012","unstructured":"Dowling, A. V., Favre, J. & Andriacchi, T. P. Inertial sensor-based feedback can reduce key risk metrics for anterior cruciate ligament injury during jump landings. Am. Jo. Sports Med. 40, 1075\u20131083 (2012).","journal-title":"Am. Jo. Sports Med."},{"key":"782_CR60","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1055\/s-0042-106298","volume":"38","author":"J Dallinga","year":"2016","unstructured":"Dallinga, J. et al. Innovative Video Feedback on Jump Landing Improves Landing Technique in Males. Int. J. Sports Med. 38, 150\u2013158 (2016).","journal-title":"Int. J. Sports Med."},{"key":"782_CR61","doi-asserted-by":"crossref","first-page":"988","DOI":"10.1016\/j.clinbiomech.2015.06.018","volume":"30","author":"E Nyman","year":"2015","unstructured":"Nyman, E. & Armstrong, C. W. Real-time feedback during drop landing training improves subsequent frontal and sagittal plane knee kinematics. Clin. Biomech. 30, 988\u2013994 (2015).","journal-title":"Clin. Biomech."},{"key":"782_CR62","doi-asserted-by":"crossref","first-page":"541","DOI":"10.1016\/j.snb.2007.12.041","volume":"131","author":"BJ Munro","year":"2008","unstructured":"Munro, B. J., Campbell, T. E., Wallace, G. G. & Steele, J. R. The intelligent knee sleeve: a wearable biofeedback device. Sens. Actuat. B: Chem. 131, 541\u2013547 (2008).","journal-title":"Sens. Actuat. B: Chem."},{"key":"782_CR63","doi-asserted-by":"crossref","first-page":"e17872","DOI":"10.2196\/17872","volume":"8","author":"R Islam","year":"2020","unstructured":"Islam, R. et al. A nonproprietary movement analysis system (MoJoXlab) based on wearable inertial measurement units applicable to healthy participants and those with anterior cruciate ligament reconstruction across a range of complex tasks: validation study. JMIR mHealth uHealth 8, e17872 (2020).","journal-title":"JMIR mHealth uHealth"},{"key":"782_CR64","doi-asserted-by":"crossref","first-page":"882","DOI":"10.1109\/TNSRE.2015.2477720","volume":"24","author":"D Jarchi","year":"2016","unstructured":"Jarchi, D. et al. Gait analysis from a single ear-worn sensor: reliability and clinical evaluation for orthopaedic patients. IEEE Trans. Neural Syst. Rehabil. Eng. 24, 882\u2013892 (2016).","journal-title":"IEEE Trans. Neural Syst. Rehabil. Eng."},{"key":"782_CR65","doi-asserted-by":"crossref","first-page":"102589","DOI":"10.1016\/j.jelekin.2021.102589","volume":"60","author":"L Chia","year":"2021","unstructured":"Chia, L. et al. Evaluating the validity and reliability of inertial measurement units for determining knee and trunk kinematics during athletic landing and cutting movements. J. Electromyogr. Kinesiol. 60, 102589 (2021).","journal-title":"J. Electromyogr. Kinesiol."},{"key":"782_CR66","doi-asserted-by":"crossref","first-page":"110549","DOI":"10.1016\/j.jbiomech.2021.110549","volume":"124","author":"B Fan","year":"2021","unstructured":"Fan, B., Xia, H., Xu, J., Li, Q. & Shull, P. B. IMU-based knee flexion, abduction and internal rotation estimation during drop landing and cutting tasks. J. Biomech. 124, 110549 (2021).","journal-title":"J. Biomech."},{"key":"782_CR67","doi-asserted-by":"crossref","first-page":"1437","DOI":"10.1016\/j.jbiomech.2009.12.025","volume":"43","author":"JT Weinhandl","year":"2010","unstructured":"Weinhandl, J. T., Armstrong, B. S., Kusik, T. P., Barrows, R. T. & O\u2019Connor, K. M. Validation of a single camera three-dimensional motion tracking system. J. Biomech. 43, 1437\u20131440 (2010).","journal-title":"J. Biomech."},{"key":"782_CR68","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1080\/09593985.2020.1723150","volume":"38","author":"W Vervaat","year":"2022","unstructured":"Vervaat, W., Bogen, B. & Moe-Nilssen, R. Within-day test-retest reliability of an accelerometer-based method for registration of step time symmetry during stair descent after ACL reconstruction and in healthy subjects. Physiother. Theory Pract. 38, 226\u2013234 (2022).","journal-title":"Physiother. Theory Pract."},{"key":"782_CR69","doi-asserted-by":"crossref","first-page":"3464","DOI":"10.3390\/s20123464","volume":"20","author":"N Ahmadian","year":"2020","unstructured":"Ahmadian, N., Nazarahari, M., Whittaker, J. L. & Rouhani, H. Quantification of triple single-leg hop test temporospatial parameters: a validated method using body-worn sensors for functional evaluation after knee injury. Sensors 20, 3464 (2020).","journal-title":"Sensors"},{"key":"782_CR70","doi-asserted-by":"crossref","first-page":"232","DOI":"10.1016\/j.gaitpost.2020.12.025","volume":"84","author":"J Oh","year":"2021","unstructured":"Oh, J. et al. Estimation of ground reaction forces during stair climbing in patients with ACL reconstruction using a depth sensor-driven musculoskeletal model. Gait Posture 84, 232\u2013237 (2021).","journal-title":"Gait Posture"},{"key":"782_CR71","doi-asserted-by":"crossref","first-page":"4383","DOI":"10.3390\/s21134383","volume":"21","author":"CR Chaaban","year":"2021","unstructured":"Chaaban, C. R. et al. Combining inertial sensors and machine learning to predict vgrf and knee biomechanics during a double limb jump landing task. Sensors 21, 4383 (2021).","journal-title":"Sensors"},{"key":"782_CR72","doi-asserted-by":"crossref","unstructured":"Cao, Z., Simon, T., Wei, S.-E. & Sheikh, Y. Realtime multi-person 2d pose estimation using part affinity fields. Paper presented at the IEEE conference on computer vision and pattern recognition, P. 7291\u20137299 (IEEE, 2017).","DOI":"10.1109\/CVPR.2017.143"},{"key":"782_CR73","doi-asserted-by":"crossref","first-page":"172","DOI":"10.1109\/TPAMI.2019.2929257","volume":"43","author":"Z Cao","year":"2021","unstructured":"Cao, Z., Hidalgo, G., Simon, T., Wei, S.-E. & Sheikh, Y. Openpose: Realtime multi-person 2d pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43, 172\u2013186 (2021).","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"782_CR74","doi-asserted-by":"crossref","first-page":"892","DOI":"10.3390\/app10030892","volume":"10","author":"K H\u00b4ebert-Losier","year":"2020","unstructured":"H\u00b4ebert-Losier, K., Hanzl\u00b4\u0131kov\u00b4a, I., Zheng, C., Streeter, L. & Mayo, M. The \u2018DEEP\u2019 Landing Error Scoring System. Appl. Sci. 10, 892 (2020).","journal-title":"Appl. Sci."},{"key":"782_CR75","doi-asserted-by":"crossref","first-page":"232596712110481","DOI":"10.1177\/23259671211048188","volume":"9","author":"K Kawaguchi","year":"2021","unstructured":"Kawaguchi, K. et al. Sex-based differences in the drop vertical jump as revealed by video motion capture analysis using artificial intelligence. Orthop. J. Sports Med. 9, 23259671211048188 (2021).","journal-title":"Orthop. J. Sports Med."},{"key":"782_CR76","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1109\/JTEHM.2017.2736559","volume":"5","author":"R Kianifar","year":"2017","unstructured":"Kianifar, R., Lee, A., Raina, S. & Kuli\u00b4c, D. Automated assessment of dynamic knee valgus and risk of knee injury during the single leg squat. IEEE J. Transl. Eng. Health Med. 5, 1\u201313 (2017).","journal-title":"IEEE J. Transl. Eng. Health Med."},{"key":"782_CR77","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1123\/jab.2012-0186","volume":"30","author":"TC Sell","year":"2014","unstructured":"Sell, T. C., Akins, J. S., Opp, A. R. & Lephart, S. M. Relationship between tibial acceleration and proximal anterior tibia shear force across increasing jump distance. J. Appl. Biomech. 30, 75\u201381 (2014).","journal-title":"J. Appl. Biomech."},{"key":"782_CR78","doi-asserted-by":"crossref","first-page":"895","DOI":"10.2519\/jospt.2018.7995","volume":"48","author":"KA Pratt","year":"2018","unstructured":"Pratt, K. A. & Sigward, S. M. Detection of knee power deficits following anterior cruciate ligament reconstruction using wearable sensors. J. Orthop. Sports Phys. Ther. 48, 895\u2013902 (2018).","journal-title":"J. Orthop. Sports Phys. Ther."},{"key":"782_CR79","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1186\/1758-2555-4-41","volume":"4","author":"F Christanell","year":"2012","unstructured":"Christanell, F., Hoser, C., Huber, R., Fink, C. & Luomajoki, H. The influence of electromyographic biofeedback therapy on knee extension following anterior cruciate ligament reconstruction: a randomized controlled trial. Sports Med. Arthrosc. Rehab. Ther. Technol. 4, 41 (2012).","journal-title":"Sports Med. Arthrosc. Rehab. Ther. Technol."},{"key":"782_CR80","doi-asserted-by":"crossref","first-page":"565","DOI":"10.1002\/jor.25070","volume":"40","author":"M-S Chan","year":"2022","unstructured":"Chan, M.-S. & Sigward, S. M. Individuals following anterior cruciate ligament reconstruction practice underloading strategies during daily activity. J. Orthop. Res. 40, 565\u2013572 (2022).","journal-title":"J. Orthop. Res."},{"key":"782_CR81","doi-asserted-by":"crossref","first-page":"555","DOI":"10.4085\/1062-6050-203-20","volume":"56","author":"C Kuenze","year":"2021","unstructured":"Kuenze, C., Pfeiffer, K., Pfeiffer, M., Driban, J. B. & Pietrosimone, B. Feasibility of a wearable-based physical activity goal-setting intervention among individuals with anterior cruciate ligament reconstruction. J. Athl. Train. 56, 555\u2013564 (2021).","journal-title":"J. Athl. Train."},{"key":"782_CR82","doi-asserted-by":"crossref","first-page":"1806","DOI":"10.1177\/0363546514540862","volume":"42","author":"BD Beynnon","year":"2014","unstructured":"Beynnon, B. D. et al. The effects of level of competition, sport, and sex on the incidence of first-time noncontact anterior cruciate ligament injury. Am. J. Sports Med. 42, 1806\u20131812 (2014).","journal-title":"Am. J. Sports Med."},{"key":"782_CR83","doi-asserted-by":"crossref","first-page":"11","DOI":"10.1093\/ptj\/70.1.11","volume":"70","author":"V Draper","year":"1990","unstructured":"Draper, V. Electromyographic biofeedback and recovery of quadriceps femoris muscle function following anterior cruciate ligament reconstruction. Phys. Ther. 70, 11\u201317 (1990).","journal-title":"Phys. Ther."},{"key":"782_CR84","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/j.clinbiomech.2018.07.007","volume":"58","author":"KL Havens","year":"2018","unstructured":"Havens, K. L., Cohen, S. C., Pratt, K. A. & Sigward, S. M. Accelerations from wearable accelerometers reflect knee loading during running after anterior cruciate ligament reconstruction. Clin. Biomech. 58, 57\u201361 (2018).","journal-title":"Clin. Biomech."},{"key":"782_CR85","doi-asserted-by":"crossref","first-page":"232596711773676","DOI":"10.1177\/2325967117736766","volume":"5","author":"F Fischer","year":"2017","unstructured":"Fischer, F. et al. Isokinetic extension strength is associated with single-leg vertical jump height. Orthop. J. Sports Med. 5, 2325967117736766 (2017).","journal-title":"Orthop. J. Sports Med."},{"key":"782_CR86","doi-asserted-by":"crossref","first-page":"4371","DOI":"10.3390\/s21134371","volume":"21","author":"S Di Paolo","year":"2021","unstructured":"Di Paolo, S., Zaffagnini, S., Pizza, N., Grassi, A. & Bragonzoni, L. Poor motor coordination elicits altered lower limb biomechanics in young football (soccer) players: implications for injury prevention through wearable sensors. Sensors 21, 4371 (2021).","journal-title":"Sensors"},{"key":"782_CR87","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41746-020-0260-4","volume":"3","author":"JC Goldsack","year":"2020","unstructured":"Goldsack, J. C. et al. Verification, analytical validation, and clinical validation (v3): the foundation of determining fit-for-purpose for biometric monitoring technologies (biomets). NPJ Digit. Med. 3, 1\u201315 (2020).","journal-title":"NPJ Digit. Med."},{"key":"782_CR88","doi-asserted-by":"crossref","first-page":"1002","DOI":"10.4085\/1062-6050-52.10.12","volume":"52","author":"TC Mauntel","year":"2017","unstructured":"Mauntel, T. C. et al. Automated quantification of the landing error scoring system with a markerless motion-capture system. J. Athl. Train. 52, 1002\u20131009 (2017).","journal-title":"J. Athl. Train."},{"key":"782_CR89","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.ptsp.2022.05.015","volume":"56","author":"J Olivares-Jabalera","year":"2022","unstructured":"Olivares-Jabalera, J. et al. Is there association between cutting and jump-landing movement quality in semi-professional football players? implications for acl injury risk screening. Phys. Ther. Sport 56, 15\u201323 (2022).","journal-title":"Phys. Ther. Sport"},{"key":"782_CR90","doi-asserted-by":"crossref","first-page":"346","DOI":"10.1016\/j.joca.2020.12.017","volume":"29","author":"MA Boswell","year":"2021","unstructured":"Boswell, M. A. et al. A neural network to predict the knee adduction moment in patients with osteoarthritis using anatomical landmarks obtainable from 2d video analysis. Osteoarthritis Cartilage 29, 346\u2013356 (2021).","journal-title":"Osteoarthritis Cartilage"},{"key":"782_CR91","doi-asserted-by":"crossref","unstructured":"Uhlrich, S. D. et al. Opencap: 3d human movement dynamics from smartphone videos. Preprint at https:\/\/www.biorxiv.org\/content\/10.1101\/2022.07.07.499061v1 (2022).","DOI":"10.1101\/2022.07.07.499061"},{"key":"782_CR92","doi-asserted-by":"crossref","first-page":"1073","DOI":"10.1177\/0363546507313572","volume":"36","author":"GD Myer","year":"2008","unstructured":"Myer, G. D., Ford, K. R., Paterno, M. V., Nick, T. G. & Hewett, T. E. The effects of generalized joint laxity on risk of anterior cruciate ligament injury in young female athletes. Am. J. Sports Med. 36, 1073\u20131080 (2008).","journal-title":"Am. J. Sports Med."},{"key":"782_CR93","doi-asserted-by":"crossref","first-page":"551","DOI":"10.1007\/s40279-013-0135-9","volume":"44","author":"D Sugimoto","year":"2014","unstructured":"Sugimoto, D., Myer, G. D., Barber Foss, K. D. & Hewett, T. E. Dosage effects of neuromuscular training intervention to reduce anterior cruciate ligament injuries in female athletes: Meta- and sub-group analyses. Sports Med. 44, 551 (2014).","journal-title":"Sports Med."},{"key":"782_CR94","doi-asserted-by":"crossref","first-page":"1259","DOI":"10.1136\/bjsports-2015-095596","volume":"50","author":"D Sugimoto","year":"2016","unstructured":"Sugimoto, D. et al. Critical components of neuromuscular training to reduce acl injury risk in female athletes: meta-regression analysis. Br. J. Sports Med. 50, 1259 (2016).","journal-title":"Br. J. Sports Med."},{"key":"782_CR95","doi-asserted-by":"crossref","first-page":"476","DOI":"10.1136\/bjsports-2012-091862","volume":"47","author":"G Myklebust","year":"2013","unstructured":"Myklebust, G., Skj\u00f8lberg, A. & Bahr, R. Acl injury incidence in female handball 10 years after the norwegian acl prevention study: important lessons learned. Br. J. Sports Med. 47, 476\u2013479 (2013).","journal-title":"Br. J. Sports Med."},{"key":"782_CR96","doi-asserted-by":"crossref","first-page":"e27195","DOI":"10.2196\/27195","volume":"9","author":"M McClincy","year":"2021","unstructured":"McClincy, M. et al. Perspectives on the gamification of an interactive health technology for postoperative rehabilitation of pediatric anterior cruciate ligament reconstruction: User-centered design approach. JMIR Serious Games 9, e27195 (2021).","journal-title":"JMIR Serious Games"},{"key":"782_CR97","doi-asserted-by":"crossref","unstructured":"Wiehr, F., Vujic, M., Kru\u00a8ger, A. & Daiber, F. The jungle warm-up run: augmenting athletes with coach-guided dynamic game elements. Paper presented at the Augmented Humans International Conference, 1\u201312 (2020).","DOI":"10.1145\/3384657.3384779"},{"key":"782_CR98","doi-asserted-by":"crossref","first-page":"7863","DOI":"10.4081\/or.2020.7863","volume":"12","author":"JS Theodoropoulos","year":"2020","unstructured":"Theodoropoulos, J. S., Bettle, J. & Kosy, J. D. The use of gps and inertial devices for player monitoring in team sports: a review of current and future applications. Orthop. Rev. 12, 7863 (2020).","journal-title":"Orthop. Rev."},{"key":"782_CR99","first-page":"e103","volume":"37","author":"JD Harris","year":"2014","unstructured":"Harris, J. D. et al. Return to sport after acl reconstruction. Orthopedics 37, e103\u2013e108 (2014).","journal-title":"Orthopedics"},{"key":"782_CR100","doi-asserted-by":"crossref","first-page":"1601","DOI":"10.1007\/s40279-021-01454-5","volume":"51","author":"M Buckthorpe","year":"2021","unstructured":"Buckthorpe, M. Recommendations for movement re-training after acl reconstruction. Sports Med. 51, 1601\u20131618 (2021).","journal-title":"Sports Med."},{"key":"782_CR101","doi-asserted-by":"crossref","first-page":"1798","DOI":"10.1007\/s00167-011-1669-8","volume":"19","author":"R Thome\u00b4e","year":"2011","unstructured":"Thome\u00b4e, R. et al. Muscle strength and hop performance criteria prior to return to sports after acl reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 19, 1798 (2011).","journal-title":"Knee Surg. Sports Traumatol. Arthrosc."},{"key":"782_CR102","doi-asserted-by":"crossref","first-page":"192","DOI":"10.1007\/s00167-016-4246-3","volume":"25","author":"A Gokeler","year":"2017","unstructured":"Gokeler, A., Welling, W., Zaffagnini, S., Seil, R. & Padua, D. Development of a test battery to enhance safe return to sports after anterior cruciate ligament reconstruction. Knee Surg. Sports Traumatol. Arthrosc. 25, 192\u2013199 (2017).","journal-title":"Knee Surg. Sports Traumatol. Arthrosc."},{"key":"782_CR103","doi-asserted-by":"crossref","first-page":"485","DOI":"10.1007\/s40279-019-01221-7","volume":"50","author":"WT Davies","year":"2020","unstructured":"Davies, W. T., Myer, G. D. & Read, P. J. Is it time we better understood the tests we are using for return to sport decision making following acl reconstruction? a critical review of the hop tests. Sports Med. 50, 485\u2013495 (2020).","journal-title":"Sports Med."},{"key":"782_CR104","doi-asserted-by":"crossref","first-page":"1305","DOI":"10.1136\/bjsports-2014-093962","volume":"49","author":"MB Undheim","year":"2015","unstructured":"Undheim, M. B. et al. Isokinetic muscle strength and readiness to return to sport following anterior cruciate ligament reconstruction: is there an association? a systematic review and a protocol recommendation. Br. J. Sports Med. 49, 1305\u20131310 (2015).","journal-title":"Br. J. Sports Med."},{"key":"782_CR105","doi-asserted-by":"crossref","first-page":"811","DOI":"10.4085\/1062-6050-0244-19","volume":"55","author":"G Hughes","year":"2020","unstructured":"Hughes, G., Musco, P., Caine, S. & Howe, L. Lower limb asymmetry after anterior cruciate ligament reconstruction in adolescent athletes: a systematic review and meta-analysis. J. Athl. Train. 55, 811\u2013825 (2020).","journal-title":"J. Athl. Train."},{"key":"782_CR106","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1177\/0363546519838794","volume":"48","author":"JM Losciale","year":"2020","unstructured":"Losciale, J. M. et al. Hop testing lacks strong association with key outcome variables after primary anterior cruciate ligament reconstruction: a systematic review. Am. J. Sports Med. 48, 511\u2013522 (2020).","journal-title":"Am. J. Sports Med."},{"key":"782_CR107","doi-asserted-by":"crossref","first-page":"249","DOI":"10.1136\/bjsports-2020-103677","volume":"56","author":"A Kotsifaki","year":"2022","unstructured":"Kotsifaki, A. et al. Single leg hop for distance symmetry masks lower limb biomechanics: time to discuss hop distance as decision criterion for return to sport after acl reconstruction? Br. J. Sports Med. 56, 249\u2013256 (2022).","journal-title":"Br. J. Sports Med."},{"key":"782_CR108","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1136\/bjsports-2019-101245","volume":"55","author":"P Read","year":"2021","unstructured":"Read, P., Mc Auliffe, S., Wilson, M. G. & Myer, G. D. Better reporting standards are needed to enhance the quality of hop testing in the setting of acl return to sport decisions: a narrative review. Br. J. Sports Med. 55, 23\u201329 (2021).","journal-title":"Br. J. Sports Med."},{"key":"782_CR109","doi-asserted-by":"crossref","first-page":"297","DOI":"10.1007\/s12178-017-9419-2","volume":"10","author":"P de Mille","year":"2017","unstructured":"de Mille, P. & Osmak, J. Performance: bridging the gap after acl surgery. Curr. Rev. Musculoskelet. Med. 10, 297\u2013306 (2017).","journal-title":"Curr. Rev. Musculoskelet. Med."},{"key":"782_CR110","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jbiomech.2018.09.009","volume":"81","author":"E Halilaj","year":"2018","unstructured":"Halilaj, E. et al. Machine learning in human movement biomechanics: Best practices, common pitfalls, and new opportunities. J. Biomech. 81, 1\u201311 (2018).","journal-title":"J. Biomech."},{"key":"782_CR111","doi-asserted-by":"crossref","first-page":"604","DOI":"10.3389\/fbioe.2020.00604","volume":"8","author":"E Dorschky","year":"2020","unstructured":"Dorschky, E. et al. Cnn-based estimation of sagittal plane walking and running biomechanics from measured and simulated inertial sensor data. Front. Bioeng. Biotechnol. 8, 604 (2020).","journal-title":"Front. Bioeng. Biotechnol."},{"key":"782_CR112","doi-asserted-by":"crossref","first-page":"289","DOI":"10.1109\/TBME.2020.3006158","volume":"68","author":"WR Johnson","year":"2020","unstructured":"Johnson, W. R. et al. Multidimensional ground reaction forces and moments from wearable sensor accelerations via deep learning. IEEE Trans. Biomed. Eng. 68, 289\u2013297 (2020).","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"782_CR113","doi-asserted-by":"crossref","first-page":"1445","DOI":"10.1109\/TII.2022.3189648","volume":"19","author":"T Tan","year":"2023","unstructured":"Tan, T., Wang, D., Shull, P. B. & Halilaj, E. IMU and smartphone camera fusion for knee adduction and knee flexion moment estimation during walking. IEEE Transactions on Industrial Informatics 19, 1445\u20131455 (2023).","journal-title":"IEEE Transactions on Industrial Informatics"},{"key":"782_CR114","doi-asserted-by":"crossref","unstructured":"Mahmood, N., Ghorbani, N., Troje, N. F., Pons-Moll, G. & Black, M. J. AMASS: Archive of motion capture as surface shapes. Paper presented at the International Conference on Computer Vision, p. 5442\u20135451 (2019).","DOI":"10.1109\/ICCV.2019.00554"},{"key":"782_CR115","doi-asserted-by":"crossref","first-page":"121006","DOI":"10.1115\/1.4055238","volume":"144","author":"K Taneja","year":"2022","unstructured":"Taneja, K. et al. A feature-encoded physics-informed parameter identification neural network for musculo-skeletal systems. J. Biomech. Eng. 144, 121006 (2022).","journal-title":"J. Biomech. Eng."},{"key":"782_CR116","doi-asserted-by":"crossref","first-page":"109525","DOI":"10.1016\/j.ymssp.2022.109525","volume":"182","author":"L Bartsoen","year":"2023","unstructured":"Bartsoen, L. et al. Bayesian parameter estimation of ligament properties based on tibio-femoral kinematics during squatting. Mech. Syst. Signal Process. 182, 109525 (2023).","journal-title":"Mech. Syst. Signal Process."},{"key":"782_CR117","unstructured":"Tian, Y., Zhang, H., Liu, Y. & Wang, L. Recovering 3d human mesh from monocular images: A survey. Preprint at https:\/\/arxiv.org\/abs\/2203.01923v2 (2022)."},{"key":"782_CR118","doi-asserted-by":"crossref","first-page":"2139","DOI":"10.1109\/TMM.2021.3076340","volume":"24","author":"P Hu","year":"2021","unstructured":"Hu, P., Ho, E. S.-L. & Munteanu, A. 3dbodynet: fast reconstruction of 3d animatable human body shape from a single commodity depth camera. IEEE Trans. Multimedia 24, 2139\u20132149 (2021).","journal-title":"IEEE Trans. Multimedia"},{"key":"782_CR119","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/2816795.2818013","volume":"34","author":"M Loper","year":"2015","unstructured":"Loper, M., Mahmood, N., Romero, J., Pons-Moll, G. & Black, M. J. Smpl: a skinned multi-person linear model. ACM Trans. Graph. 34, 1\u201316 (2015).","journal-title":"ACM Trans. Graph."},{"key":"782_CR120","doi-asserted-by":"crossref","unstructured":"Xu, H. et al. Ghum & ghuml: Generative 3d human shape and articulated pose models. Paper presented at the IEEE\/CVF Conference on Computer Vision and Pattern Recognition. p. 6184-6193 (2020).","DOI":"10.1109\/CVPR42600.2020.00622"},{"key":"782_CR121","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1080\/23335432.2019.1621205","volume":"6","author":"E Scalona","year":"2019","unstructured":"Scalona, E. et al. Inter-laboratory and inter-operator reproducibility in gait analysis measurements in pediatric subjects. Int. Biomech. 6, 19\u201333 (2019).","journal-title":"Int. Biomech."},{"key":"782_CR122","doi-asserted-by":"crossref","unstructured":"Perazzi, F. et al. A benchmark dataset and evaluation methodology for video object segmentation. Paper presented at the IEEE conference on computer vision and pattern recognition. p. 724-732 (2016).","DOI":"10.1109\/CVPR.2016.85"},{"key":"782_CR123","doi-asserted-by":"crossref","first-page":"14","DOI":"10.3389\/frobt.2018.00014","volume":"5","author":"B Hu","year":"2018","unstructured":"Hu, B., Rouse, E. & Hargrove, L. Benchmark datasets for bilateral lowerlimb neuromechanical signals from wearable sensors during unassisted locomotion in able-bodied individuals. Front. Robot. AI 5, 14 (2018).","journal-title":"Front. Robot. AI"},{"key":"782_CR124","doi-asserted-by":"crossref","first-page":"110320","DOI":"10.1016\/j.jbiomech.2021.110320","volume":"119","author":"J Camargo","year":"2021","unstructured":"Camargo, J., Ramanathan, A., Flanagan, W. & Young, A. A comprehensive, open-source dataset of lower limb biomechanics in multiple conditions of stairs, ramps, and level-ground ambulation and transitions. J. Biomech. 119, 110320 (2021).","journal-title":"J. Biomech."},{"key":"782_CR125","unstructured":"Embry, K., Villarreal, D., Macaluso, R. & Gregg, R. The effect of walking incline and speed on human leg kinematics, kinetics, and emg. IEEE Dataport 10, https:\/\/ieee-dataport.org\/open-access\/effect-walking-incline-and-speed-human-leg-kinematics-kinetics-and-emg (2018)."},{"key":"782_CR126","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/sdata.2016.18","volume":"3","author":"MD Wilkinson","year":"2016","unstructured":"Wilkinson, M. D. et al. The fair guiding principles for scientific data management and stewardship. Scientific data 3, 1\u20139 (2016).","journal-title":"Scientific data"},{"key":"782_CR127","doi-asserted-by":"crossref","first-page":"1338","DOI":"10.2522\/ptj.20120002","volume":"92","author":"PW Stratford","year":"2012","unstructured":"Stratford, P. W. & Riddle, D. L. When minimal detectable change exceeds a diagnostic test\u2013based threshold change value for an outcome measure: Resolving the conflict. Phys. Ther. 92, 1338\u20131347 (2012).","journal-title":"Phys. Ther."},{"key":"782_CR128","doi-asserted-by":"crossref","first-page":"A12","DOI":"10.7326\/ACPJC-1995-123-3-A12","volume":"123","author":"WS Richardson","year":"1995","unstructured":"Richardson, W. S. et al. The well-built clinical question: a key to evidence-based decisions. ACP J Club 123, A12\u2013A13 (1995).","journal-title":"ACP J Club"},{"key":"782_CR129","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1186\/s13643-020-01552-x","volume":"10","author":"MJ Page","year":"2021","unstructured":"Page, M. J. et al. The prisma 2020 statement: an updated guideline for reporting systematic reviews. Syst. Rev. 10, 1\u201311 (2021).","journal-title":"Syst. Rev."},{"key":"782_CR130","doi-asserted-by":"crossref","first-page":"e011458","DOI":"10.1136\/bmjopen-2016-011458","volume":"6","author":"MJ Downes","year":"2016","unstructured":"Downes, M. J., Brennan, M. L., Williams, H. C. & Dean, R. S. Development of a critical appraisal tool to assess the quality of cross-sectional studies (axis). BMJ Open 6, e011458 (2016).","journal-title":"BMJ Open"},{"key":"782_CR131","doi-asserted-by":"crossref","first-page":"426","DOI":"10.1080\/14763141.2017.1412495","volume":"18","author":"G Dar","year":"2019","unstructured":"Dar, G., Yehiel, A. & Cale\u2019 Benzoor, M. Concurrent criterion validity of a novel portable motion analysis system for assessing the landing error scoring system (LESS) test. Sports Biomech. 18, 426\u2013436 (2019).","journal-title":"Sports Biomech."},{"key":"782_CR132","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1123\/jab.2018-0105","volume":"35","author":"M Eltoukhy","year":"2019","unstructured":"Eltoukhy, M. et al. Concurrent validity of depth-sensing cameras for noncontact ACL injury screening during side-cut maneuvers in adolescent athletes: a preliminary study. J. Appl. Biomech. 35, 2\u201310 (2019).","journal-title":"J. Appl. Biomech."},{"key":"782_CR133","doi-asserted-by":"crossref","first-page":"537","DOI":"10.1177\/1941738117726323","volume":"9","author":"AD Gray","year":"2017","unstructured":"Gray, A. D. et al. Development and validation of a portable and inexpensive tool to measure the drop vertical jump using the microsoft kinect V2. Sports Health 9, 537\u2013544 (2017).","journal-title":"Sports Health"},{"key":"782_CR134","doi-asserted-by":"crossref","first-page":"5536","DOI":"10.3390\/app11125536","volume":"11","author":"A Uhl\u00b4ar","year":"2021","unstructured":"Uhl\u00b4ar, A. et al. Kinect azure-based accurate measurement of dynamic valgus position of the knee-a corrigible predisposing factor of osteoarthritis. Appl. Sci. 11, 5536 (2021).","journal-title":"Appl. Sci."}],"container-title":["npj Digital Medicine"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.nature.com\/articles\/s41746-023-00782-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41746-023-00782-2","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/www.nature.com\/articles\/s41746-023-00782-2.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,3,26]],"date-time":"2023-03-26T20:04:21Z","timestamp":1679861061000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.nature.com\/articles\/s41746-023-00782-2"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,18]]},"references-count":134,"journal-issue":{"issue":"1","published-online":{"date-parts":[[2023,12]]}},"alternative-id":["782"],"URL":"https:\/\/doi.org\/10.1038\/s41746-023-00782-2","relation":{},"ISSN":["2398-6352"],"issn-type":[{"value":"2398-6352","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,3,18]]},"assertion":[{"value":"10 October 2022","order":1,"name":"received","label":"Received","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"17 February 2023","order":2,"name":"accepted","label":"Accepted","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"18 March 2023","order":3,"name":"first_online","label":"First Online","group":{"name":"ArticleHistory","label":"Article History"}},{"value":"Peter Shull is an Associate Editor of npj Digital Medicine. Other authors (T.T., A.A.G., B.F., K.G.S., S.L.S., S.D.U., J.L.H., S.L.D., and A.S.C.) declare no competing interests.","order":1,"name":"Ethics","group":{"name":"EthicsHeading","label":"Competing interests"}}],"article-number":"46"}}